Special treatment at coordinate origin, wrong! to be deleted

$\displaystyle \Psi \approx a^{00} + a^{10} R + a^{01} Z + a^{11} R Z + a^{20} R^2 + a^{02} Z^2 .$ (436)

$\displaystyle R = R_0 + b^{11} \sqrt{\psi} \cos \theta$ (437)

$\displaystyle Z = Z_0 + c^{11} \sqrt{\psi} \sin \theta$ (438)


$\displaystyle \Psi$ $\displaystyle \approx$ $\displaystyle a^{00} + a^{10} \left( R_0 + b^{11} \sqrt{\psi} \cos \theta
\righ...
... \cos \theta \right)^2 + a^{02} \left( c^{11}
\sqrt{\psi} \sin \theta \right)^2$  
  $\displaystyle =$ $\displaystyle a^{00} + a^{10} R_0 + a^{10} b^{11} \sqrt{\psi} \cos \theta + a^{...
...^{20} R_0 b^{11}
\sqrt{\psi} \cos \theta + a^{02} (c^{11})^2 \psi \sin^2 \theta$  
  $\displaystyle =$ $\displaystyle d_0 + d_1 \sqrt{\psi} \cos \theta + d_2 \sqrt{\psi} \sin \theta + d_3
\psi \sin 2 \theta + d_4 \psi \cos^2 \theta + d_5 \psi \sin^2 \theta$  

$\displaystyle \Psi = d_0 + d_1 \sqrt{\psi} \cos \theta + d_2 \sqrt{\psi} \sin \theta $

$\displaystyle R = R_0 + b^{11} \sqrt{\psi} \cos \theta + b^{12} \sqrt{\psi} \co...
...\psi} \right)^2 \cos \theta + b^{22} \left( \sqrt{\psi} \right)^2 \cos 2 \theta$ (439)

$\displaystyle Z = Z_0 + c^{11} \sqrt{\psi} \sin \theta + c^{12} \sqrt{\psi} \si...
...\psi} \right)^2 \sin \theta + c^{22} \left( \sqrt{\psi} \right)^2 \sin 2 \theta$ (440)



Subsections
yj 2018-03-09