Proof of equilavenc between Eq. (8) and Euler-Lagrange equation (163)

Equation (8) is repeated here, i.e.,

$\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial \dot{\e...
...}} \right) = \frac{\partial \mathcal{L}}{\partial \ensuremath{\boldsymbol{X}}},$ (162)

where $ \partial / \partial \dot{\ensuremath{\boldsymbol{X}}}$ and $ \partial / \partial
\ensuremath{\boldsymbol{X}}$ are considered as gradient operators. Note that, in Cartisian coordinates, the components of Eq. (8) are obviously equivalent to the respective Euler-Lagrange equations. We now check whether the component equations in arbitrary coordinate system obtained by evaluating the gradient of the Lagrangian $ \mathcal{L}$ in Eq. (8) are equivalent to the respective Euler-Lagrange equations in that coordinates system. The Euler-Lagrange equation in any coordinates is given by

$\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) = \frac{\partial \mathcal{L}}{\partial q_i},$ (163)

which is expressed in terms of a single coordinate component, and is coordinate independent, i..e, it takes the same form for every components of any coordinate systems.

In this section, I prove that the components of Eq. (8) are equivalent to the Euler-Lagrange equation (163) in cylindrical coordinates $ (R, Z, \varphi)$. First, let us consider the term $ \partial \mathcal{L} / \partial
\dot{\ensuremath{\boldsymbol{X}}}$, which, in Cartesian coordinators, is written as

$\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{\ensuremath{\boldsymbol...
...artial \mathcal{L}}{\partial \dot{z}} \widehat{\ensuremath{\boldsymbol{e}}}_z .$ (164)

Using the chain rule, the above equation is written as
$\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{\ensuremath{\boldsymbol{X}}}}$ $\displaystyle =$ $\displaystyle \left(
\frac{\partial \mathcal{L}}{\partial R} \frac{\partial R}{...
...tial
\dot{Z}}{\partial \dot{x}} \right) \widehat{\ensuremath{\boldsymbol{e}}}_x$  
  $\displaystyle +$ $\displaystyle \left( \frac{\partial \mathcal{L}}{\partial R} \frac{\partial
R}{...
...tial
\dot{Z}}{\partial \dot{y}} \right) \widehat{\ensuremath{\boldsymbol{e}}}_y$  
  $\displaystyle +$ $\displaystyle \left( \frac{\partial \mathcal{L}}{\partial R} \frac{\partial
R}{...
...tial
\dot{Z}}{\partial \dot{z}} \right) \widehat{\ensuremath{\boldsymbol{e}}}_z$  

Using the transformation relation

$\displaystyle \left\{ \begin{array}{l} R = \sqrt{x^2 + y^2} \varphi = \ensure...
...{ArcSin}} \left( \frac{y}{\sqrt{x^2 + y^2}} \right) Z = z \end{array} \right.$ (165)

we obtain $ \partial R / \partial \dot{x} = 0$, $ \partial R / \partial \dot{y}
= 0$, etc. Thus $ \partial \mathcal{L} / \partial
\dot{\ensuremath{\boldsymbol{X}}}$ reduces to

$\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{\ensuremath{\boldsymbol...
...tial \dot{Z}}{\partial \dot{z}} \right) \widehat{\ensuremath{\boldsymbol{e}}}_z$ (166)

Using the transformation relation Eq. (165), we obtain

$\displaystyle \dot{R} = \frac{x \dot{x}}{\sqrt{x^2 + y^2}} + \frac{y \dot{y}}{\sqrt{x^2 + y^2}},$ (167)

$\displaystyle \dot{\varphi} = - \frac{y}{x^2 + y^2} \dot{x} + \frac{x}{x^2 + y^2} \dot{y},$ (168)

and

$\displaystyle \dot{Z} = \dot{z}$ (169)

Noting that $ \partial \dot{Z} / \partial \dot{x} = 0$, $ \partial \dot{Z} /
\partial \dot{y} = 0$, $ \partial \dot{R} / \partial \dot{z} = 0$, $ \partial \dot{\varphi} / \partial \dot{z} = 0$, Eq. (166) is further written as

$\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{\ensuremath{\boldsymbol...
... \mathcal{L}}{\partial \dot{Z}} \right) \widehat{\ensuremath{\boldsymbol{e}}}_z$ (170)

Using Eqs. (167) and (168), we obtain

$\displaystyle \frac{\partial \dot{R}}{\partial \dot{x}} = \frac{x}{R} = \cos \varphi$ (171)

$\displaystyle \frac{\partial \dot{R}}{\partial \dot{y}} = \frac{y}{R} = \sin \varphi$ (172)

$\displaystyle \frac{\partial \dot{\varphi}}{\partial \dot{x}} = - \frac{y}{R^2}$ (173)

$\displaystyle \frac{\partial \dot{\varphi}}{\partial \dot{y}} = \frac{x}{R^2}$ (174)

Using these, Eq. (170) is written as
$\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{\ensuremath{\boldsymbol{X}}}}$ $\displaystyle =$ $\displaystyle \left(
\frac{\partial \mathcal{L}}{\partial \dot{R}} \cos \varphi...
... \mathcal{L}}{\partial \dot{Z}} \right)
\widehat{\ensuremath{\boldsymbol{e}}}_z$  
  $\displaystyle =$ $\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{R}} \left( \cos \varphi...
...
\mathcal{L}}{\partial \dot{Z}} \right) \widehat{\ensuremath{\boldsymbol{e}}}_z$  
  $\displaystyle =$ $\displaystyle \frac{\partial \mathcal{L}}{\partial \dot{R}}
\widehat{\ensuremat...
...\partial \mathcal{L}}{\partial \dot{Z}} \widehat{\ensuremath{\boldsymbol{e}}}_z$ (175)

Using this, the left-hand side of Eq. (8) is written as
$\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial
\dot{\ensuremath{\boldsymbol{X}}}} \right)$ $\displaystyle =$ $\displaystyle \frac{d}{d t} \left( \frac{\partial
\mathcal{L}}{\partial \dot{R}...
...d t} \left( \frac{1}{R}
\widehat{\ensuremath{\boldsymbol{e}}}_{\varphi} \right)$  
  $\displaystyle =$ $\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial \dot{R}...
...R - \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi}
\frac{\dot{R}}{R^2} \right]$ (176)

Next, consider the right-hand side of Eq. (8), which is the space gradient of Lagrangian $ \mathcal{L}$. When I at first considered this problem, I took it for granted that the space gradient in cylindrical coordinates should be

$\displaystyle \frac{\partial \mathcal{L}}{\partial \ensuremath{\boldsymbol{X}}}...
...{\partial \varphi} \frac{1}{R} \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi},$ (177)

which turns out to be wrong because this formula does not take into account that $ \mathcal{L}$ depends on $ \dot{\ensuremath{\boldsymbol{X}}}$ which in turn depends on the spatial coordinates. The correct way to calculate the space gradient is as follows:
$\displaystyle \frac{\partial \mathcal{L}}{\partial \ensuremath{\boldsymbol{X}}}$ $\displaystyle =$ $\displaystyle \frac{\partial
\mathcal{L}}{\partial x} \widehat{\ensuremath{\bol...
...\frac{\partial
\mathcal{L}}{\partial z} \widehat{\ensuremath{\boldsymbol{e}}}_z$  
  $\displaystyle =$ $\displaystyle \left[ \frac{\partial \mathcal{L}}{\partial R} \frac{\partial
R}{...
...\frac{\partial \mathcal{L}}{\partial Z} \widehat{\ensuremath{\boldsymbol{e}}}_z$ (178)

It is important to note that $ \mathcal{L}$ depends on $ \dot{R}$, $ \dot{\varphi}$ which in turn depend on $ x$ and $ y$. As a result, there exist additional terms (the last two terms in both the brackets), which would be missed if we used the formula in Eq. (177). Equation (178) is further written as
$\displaystyle \frac{\partial \mathcal{L}}{\partial \ensuremath{\boldsymbol{X}}}$ $\displaystyle =$ $\displaystyle \left[
\frac{\partial \mathcal{L}}{\partial R} \cos \varphi + \fr...
...\frac{\partial \mathcal{L}}{\partial Z} \widehat{\ensuremath{\boldsymbol{e}}}_z$  
  $\displaystyle =$ $\displaystyle \frac{\partial \mathcal{L}}{\partial R} \widehat{\ensuremath{\bol...
...tial
\dot{\varphi}}{\partial y} \right] \widehat{\ensuremath{\boldsymbol{e}}}_y$ (179)

Using
$\displaystyle \frac{\partial \dot{R}}{\partial x}$ $\displaystyle =$ $\displaystyle \dot{x} \frac{y^2}{R^3} - y
\dot{y} \frac{x}{R^3}$  
  $\displaystyle =$ $\displaystyle \frac{\dot{x}}{R} \sin^2 \varphi - \frac{\dot{y}}{R} \sin \varphi
\cos \varphi$  
  $\displaystyle =$ $\displaystyle - \dot{\varphi} \sin \varphi$ (180)


$\displaystyle \frac{\partial \dot{R}}{\partial y}$ $\displaystyle =$ $\displaystyle \dot{y} \frac{x^2}{R^3} - x
\dot{x} \frac{y}{R^3}$  
  $\displaystyle =$ $\displaystyle \frac{\dot{y}}{R} \cos^2 \varphi - \frac{\dot{x}}{R} \sin \varphi
\cos \varphi$  
  $\displaystyle =$ $\displaystyle \dot{\varphi} \cos \varphi,$ (181)


$\displaystyle \frac{\partial \dot{\varphi}}{\partial x}$ $\displaystyle =$ $\displaystyle - y \dot{x} \left( - \frac{2
x}{R^4} \right) + \dot{y} \left( \frac{1}{R^2} - \frac{2 x^2}{R^4} \right)$  
  $\displaystyle =$ $\displaystyle \frac{2 \dot{x}}{R^2} \cos \varphi \sin \varphi + \frac{\dot{y}}{R^2}
\left( 1 - 2 \cos^2 \varphi \right)$  
  $\displaystyle =$ $\displaystyle \frac{2 \dot{x}}{R^2} \cos \varphi \sin \varphi + \frac{\dot{y}}{R^2}
\left( \sin^2 \varphi - \cos^2 \varphi \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\cos \varphi}{R} \dot{\varphi} + \frac{\sin \varphi}{R^2}
\dot{R},$ (182)


$\displaystyle \frac{\partial \dot{\varphi}}{\partial y}$ $\displaystyle =$ $\displaystyle - \dot{x} \left( - \frac{2
y^2}{R^4} + \frac{1}{R^2} \right) - x \dot{y} \frac{2 y}{R^4}$  
  $\displaystyle =$ $\displaystyle - \frac{2 \dot{y}}{R^2} \cos \varphi \sin \varphi +
\frac{\dot{x}}{R^2} \left( 2 \sin^2 \varphi - 1 \right)$  
  $\displaystyle =$ $\displaystyle - \frac{2 \dot{y}}{R^2} \cos \varphi \sin \varphi +
\frac{\dot{x}}{R^2} \left( \sin^2 \varphi - \cos^2 \varphi \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\dot{y}}{R^2} \cos \varphi \sin \varphi - \frac{\dot{x}}{...
...ac{\dot{y}}{R^2} \cos \varphi \sin \varphi +
\frac{\dot{x}}{R^2} \sin^2 \varphi$  
  $\displaystyle =$ $\displaystyle - \frac{\cos \varphi}{R^2} \dot{R} - \frac{\sin \varphi}{R}
\dot{\varphi}$ (183)

Using these results, the last two terms in Eq. (179) is written as
    $\displaystyle \left[ - \frac{\partial \mathcal{L}}{\partial \dot{R}} \dot{\varp...
...arphi}{R} \dot{\varphi} \right) \right]
\widehat{\ensuremath{\boldsymbol{e}}}_y$  
    $\displaystyle = \frac{\partial \mathcal{L}}{\partial \dot{R}} \dot{\varphi}
\wi...
...-
\frac{\dot{R}}{R^2} \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi} \right) .$ (184)

Using this, Eq. (179) is written as

$\displaystyle \frac{\partial \mathcal{L}}{\partial \ensuremath{\boldsymbol{X}}}...
...- \frac{\dot{R}}{R^2} \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi} \right] .$ (185)

Note that, compared with Eq. (177), the above expression contains additional terms. The additional terms are the source of confusion when I at first tried to prove the equivalence between Eqs. (8) and (163). (I was confused for many days before I fininaly found the solution given here.) Using Eqs. (185) and (176) in Eq. (162), we recover the Euler-Lagrange equation in cylindrical coordinates, i.e.,

$\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial \dot{R}} \right) = \frac{\partial \mathcal{L}}{\partial R},$ (186)

$\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} \right) = \frac{\partial \mathcal{L}}{\partial \varphi},$ (187)

$\displaystyle \frac{d}{d t} \left( \frac{\partial \mathcal{L}}{\partial \dot{Z}} \right) = \frac{\partial \mathcal{L}}{\partial Z} .$ (188)

YouJun Hu 2014-05-19