Perturbed Lagrangian for ideal MHD perturbation

For ideal MHD perturbation, the perturbed magnetic field is written as

$\displaystyle \ensuremath{\boldsymbol{B}}^{(1)}$ $\displaystyle =$ $\displaystyle \nabla \times \left( \ensuremath{\boldsymbol{\xi}}_{\perp} \times
\ensuremath{\boldsymbol{B}}_0 \right)$ (142)
  $\displaystyle =$ $\displaystyle - \ensuremath{\boldsymbol{B}}_0 \left( \nabla \cdot \ensuremath{\...
...nsuremath{\boldsymbol{\xi}}_{\perp}
\cdot \nabla \ensuremath{\boldsymbol{B}}_0,$ (143)

Using Eq. (142), the vector potential of magnetic perturbation is written as

$\displaystyle \ensuremath{\boldsymbol{A}}_1 = \ensuremath{\boldsymbol{\xi}}_{\perp} \times \ensuremath{\boldsymbol{B}}_0$ (144)

Using Eq. (143), the parallel component of the magnetic perturbation is written as
$\displaystyle B_{\parallel}^{(1)}$ $\displaystyle \equiv$ $\displaystyle \ensuremath{\boldsymbol{b}}^{(0)} \cdot \ensuremath{\boldsymbol{B}}^{(1)}$  
  $\displaystyle =$ $\displaystyle - B_0 \left( \nabla \cdot \ensuremath{\boldsymbol{\xi}}_{\perp} \...
...a
\ensuremath{\boldsymbol{B}}_0 \right] \cdot \ensuremath{\boldsymbol{b}}^{(0)}$ (145)

Here I have some important remarks about tensor identities (I had not known these identities before CaiHuiShan told me). First we note the associate law applies in this case (Important!), thus

$\displaystyle B_{\parallel}^{(1)} = - B_0 \left( \nabla \cdot \ensuremath{\bold...
...\ensuremath{\boldsymbol{B}}_0 \cdot \ensuremath{\boldsymbol{b}}^{(0)} \right) .$ (146)

Second we have the tensor identity (Important!, CaiHuiShan let me know this identity),

$\displaystyle \nabla \left( \ensuremath{\boldsymbol{A}} \cdot \ensuremath{\bold...
...t( \nabla \ensuremath{\boldsymbol{B}} \right) \cdot \ensuremath{\boldsymbol{A}}$ (147)

Using this, the second term of Eq. (146) is written as
$\displaystyle \ensuremath{\boldsymbol{B}}_0 \cdot \left( \nabla \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \ensuremath{\boldsymbol{b}}
\right)$ $\displaystyle =$ $\displaystyle \ensuremath{\boldsymbol{B}}_0 \cdot \left[ \nabla \left(
\ensurem...
...\ensuremath{\boldsymbol{b}}
\cdot \ensuremath{\boldsymbol{\xi}}_{\perp} \right]$  
  $\displaystyle =$ $\displaystyle \ensuremath{\boldsymbol{B}}_0 \cdot \left[ 0 - \nabla \ensuremath{\boldsymbol{b}} \cdot
\ensuremath{\boldsymbol{\xi}}_{\perp} \right]$  
  $\displaystyle =$ $\displaystyle - B_0 \ensuremath{\boldsymbol{\kappa}} \cdot \ensuremath{\boldsymbol{\xi}}_{\perp},$ (148)

where $ \ensuremath{\boldsymbol{\kappa}} = \ensuremath{\boldsymbol{b}} \cdot \nabla \ensuremath{\boldsymbol{b}}$. The last term of Eq. (146) is written as
$\displaystyle \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left( \nabla \ensuremath{\boldsymbol{B}}_0 \cdot \ensuremath{\boldsymbol{b}}
\right)$ $\displaystyle =$ $\displaystyle \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left[ \nabla (B_0 \ensuremath{\boldsymbol{b}})
\cdot \ensuremath{\boldsymbol{b}} \right]$  
  $\displaystyle =$ $\displaystyle \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left[ ( \ensuremath{...
...\nabla \ensuremath{\boldsymbol{b}}) \cdot \ensuremath{\boldsymbol{b}} \right] .$ (149)

We note that $ \nabla \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\boldsymbol{b}} = 0$ (CaiHuiShan let me know this), since the tensor identity in Eq. (147) indicates

$\displaystyle 0 = \nabla \left( \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\...
...ght) = 2 \nabla \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\boldsymbol{b}} .$ (150)

(It is interesting to note that $ \ensuremath{\boldsymbol{b}} \cdot \nabla \ensuremath{\boldsymbol{b}} \equiv
\ensuremath{\boldsymbol{\kappa}} \neq 0$ while the above result proves that $ \nabla \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\boldsymbol{b}} = 0$.) Thus Eq. (149) becomes
$\displaystyle \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left( \nabla \ensuremath{\boldsymbol{B}}_0 \cdot \ensuremath{\boldsymbol{b}}
\right)$ $\displaystyle =$ $\displaystyle \left. \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left[ ( \ensu...
...th{\boldsymbol{b}}
\nabla B_0 \right) \cdot \ensuremath{\boldsymbol{b}} \right]$  
  $\displaystyle =$ $\displaystyle \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \nabla B_0$ (151)

Using the above results, the parallel component of the perturbed magnetic field Eq. (146) becomes

$\displaystyle B_{\parallel}^{(1)} = - B_0 \left( \nabla \cdot \ensuremath{\bold...
...ldsymbol{\xi}}_{\perp} - \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \nabla B_0$ (152)

The perturbed Lagrangian, Eq. (133), is

$\displaystyle \mathcal{L}^{(1)} = \frac{Z e}{c} \ensuremath{\boldsymbol{A}}^{(1...
...\ensuremath{\boldsymbol{X}}}^{(0)} - \mu_0 B_{\parallel}^{(1)} - Z e \phi^{(1)}$ (153)

Using Eq. (144) in Eq. (153) yields

$\displaystyle \mathcal{L}^{(1)} = \frac{Z e}{c} \left( \ensuremath{\boldsymbol{...
...\ensuremath{\boldsymbol{X}}}^{(0)} - \mu_0 B_{\parallel}^{(1)} - Z e \phi^{(1)}$ (154)

Using Eq. (78) for $ \dot{\ensuremath{\boldsymbol{X}}}^{(0)}$, Eq. (154) is written as
$\displaystyle \mathcal{L}^{(1)}$ $\displaystyle =$ $\displaystyle \frac{Z e}{c} \left( \ensuremath{\boldsymbol{\xi}}_{\perp} \times...
...ldsymbol{E}}^{(0)}
\right) \right] - \mu_0 B_{\parallel}^{(1)} - Z e \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{Z e}{c} \left( \ensuremath{\boldsymbol{\xi}}_{\perp} \times...
...abla \varphi^{(0)} \right) \right] - \mu_0 B_{\parallel}^{(1)} - Z e
\phi^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{Z e}{c} \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left\{...
...phi^{(0)} \right) \right] \right\} - \mu_0
B_{\parallel}^{(1)} - Z e \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{Z e}{c} \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left\{...
...} \left( \ldots . \right) \right\} - \mu_0
B_{\parallel}^{(1)} - Z e \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{Z e}{c} \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left\{...
...bla \varphi^{(0)} \right) \right\} - \mu_0
B_{\parallel}^{(1)} - Z e \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{Z e}{c} \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left\{...
...bla \varphi^{(0)} \right) \right\} - \mu_0 B_{\parallel}^{(1)} - Z e
\phi^{(1)}$  
  $\displaystyle =$ $\displaystyle - \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \left( \mu_0 \nabla...
...+ Z e \nabla \varphi^{(0)} \right) -
\mu_0 B_{\parallel}^{(1)} - Z e \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle - m v_{\parallel}^2 \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot
\...
...^{(1)} + \ensuremath{\boldsymbol{\xi}}_{\perp}
\cdot \nabla \phi^{(0)} \right),$ (155)

Equation (155) agrees with Eq. (55) in Porcelli's paper[1]. The perturbed electrical field is

$\displaystyle \ensuremath{\boldsymbol{E}}^{(1)} = - \frac{1}{c} \ensuremath{\bo...
...ensuremath{\boldsymbol{\xi}}_{\perp} \times \ensuremath{\boldsymbol{B}}^{(0)} .$ (156)

On the other hand, $ \ensuremath{\boldsymbol{E}}^{(1)}$ can be expressed as
$\displaystyle \ensuremath{\boldsymbol{E}}^{(1)}$ $\displaystyle =$ $\displaystyle - \frac{1}{c} \frac{\partial
\ensuremath{\boldsymbol{A}}^{(1)}}{\partial t} - \nabla \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle - \frac{1}{c} \frac{\partial \left( \ensuremath{\boldsymbol{\xi}}...
...imes
\ensuremath{\boldsymbol{B}}^{(0)} \right)}{\partial t} - \nabla \phi^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{i \omega}{c} \ensuremath{\boldsymbol{\xi}}_{\perp} \times \ensuremath{\boldsymbol{B}}^{(0)} -
\nabla \phi^{(1)}$ (157)

Comparing Eqs. (156) and (157), we obtain

$\displaystyle \nabla \phi^{(1)} = 0.$ (158)

which indicates the perturbed scalar potential is a constant. We can choose $ \phi^{(1)} = 0$. We consider the case that there is no electrical field in the equilibrium, i.e., $ \phi^{(0)} = 0$. Using $ \phi^{(0)} = 0$ and $ \phi^{(1)} = 0$, the Lagrangian in Eq. (155) is written as

$\displaystyle \mathcal{L}^{(1)} = - m v_{\parallel}^2 \ensuremath{\boldsymbol{\...
...allel} + \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \nabla B_0 \right) \mu_0 .$ (159)

Substituting the expression of $ B_{\parallel}^{(1)}$ in Eq. (152) into the above equation, we obtain
$\displaystyle \mathcal{L}^{(1)}$ $\displaystyle =$ $\displaystyle - m v_{\parallel}^2 \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot
\...
...abla B_0 + \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot
\nabla B_0 \right) \mu_0$  
  $\displaystyle =$ $\displaystyle - m v_{\parallel}^2 \ensuremath{\boldsymbol{\xi}}_{\perp} \cdot \...
...{\boldsymbol{\kappa}} \cdot \ensuremath{\boldsymbol{\xi}}_{\perp} \right) \mu_0$  
  $\displaystyle =$ $\displaystyle - \left( m v_{\parallel}^2 - \mu_0 B_0 \right) \ensuremath{\bolds...
...dsymbol{\kappa}} + \mu_0 B_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}}_{\perp}$ (160)

We note an important fact that magnetic curvature $ \ensuremath{\boldsymbol{\kappa}}$ is perpendicular to $ \ensuremath{\boldsymbol{b}}$. This is because that $ \ensuremath{\boldsymbol{\kappa}}
\equiv \ensuremath{\boldsymbol{b}} \cdot \nab...
... - \ensuremath{\boldsymbol{b}} \times \nabla
\times \ensuremath{\boldsymbol{b}}$. The last equality is due to the vector identity $ \nabla
\left( \ensuremath{\boldsymbol{A}} \cdot \ensuremath{\boldsymbol{B}} \right)$= $ \ensuremath{\boldsymbol{A}} \times \nabla
\times \ensuremath{\boldsymbol{B}} +...
...mbol{A}} + \ensuremath{\boldsymbol{B}} \cdot \nabla
\ensuremath{\boldsymbol{A}}$. Using this fact, Eq. (160) can also be written as

$\displaystyle \mathcal{L}^{(1)} = - \left( m v_{\parallel}^2 - \mu_0 B_0 \right...
...ymbol{\kappa}} + \mu_0 B_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}}_{\perp} .$ (161)

Eq. (161) agrees with Eq. (58) in Porcelli's paper[1].

YouJun Hu 2014-05-19