Time evolution of $ v_{\parallel}$

The time evolution of $ v_{\parallel}$ can be obtained by dotting Eq. (13) by $ \ensuremath{\boldsymbol{b}}$, which gives

$\displaystyle \frac{Z e}{c} \frac{\partial \ensuremath{\boldsymbol{A}}}{\partia...
...symbol{b}} \cdot \nabla B - Z e \ensuremath{\boldsymbol{b}} \cdot \nabla \phi .$ (22)

Noting that

$\displaystyle \ensuremath{\boldsymbol{b}} \cdot \frac{\partial \ensuremath{\boldsymbol{b}}}{\partial t} = \frac{1}{2} \frac{\partial b^2}{\partial t} = 0,$ (23)

Eq. (22) is written as

$\displaystyle \frac{Z e}{c} \frac{\partial \ensuremath{\boldsymbol{A}}}{\partia...
...symbol{b}} \cdot \nabla B - Z e \ensuremath{\boldsymbol{b}} \cdot \nabla \phi .$ (24)

Using

$\displaystyle \ensuremath{\boldsymbol{E}} = - \nabla \phi - \frac{1}{c} \frac{\partial \ensuremath{\boldsymbol{A}}}{\partial t},$ (25)

Eq. (24) is written as

$\displaystyle m \dot{v}_{\parallel} = - \dot{\ensuremath{\boldsymbol{X}}} \cdot...
...ot \nabla B + Z e \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\boldsymbol{E}}$ (26)

Noting that the magnetic curture is given by $ \ensuremath{\boldsymbol{\kappa}} = -
\ensuremath{\boldsymbol{b}} \times \nabla \times \ensuremath{\boldsymbol{b}}$, the above equation is written as

$\displaystyle m \dot{v}_{\parallel} = m v_{\parallel} \dot{\ensuremath{\boldsym...
...t \nabla B + Z e \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\boldsymbol{E}},$ (27)

which governing the time evolution of $ v_{\parallel}$.

YouJun Hu 2014-05-19