Energy conservation

Doting Eq. (21) with $ \dot{\ensuremath{\boldsymbol{X}}}$, we obtain

$\displaystyle Z e \ensuremath{\boldsymbol{E}}^{\star} \cdot \dot{\ensuremath{\b...
...parallel} \ensuremath{\boldsymbol{b}} \cdot \dot{\ensuremath{\boldsymbol{X}}} .$ (28)

Using

$\displaystyle \ensuremath{\boldsymbol{E}}^{\star} = - \nabla \phi - \frac{1}{c}...
...{m v_{\parallel}}{Z e} \frac{\partial \ensuremath{\boldsymbol{b}}}{\partial t},$ (29)

Eq. (28) is written as

$\displaystyle m \dot{v}_{\parallel} \ensuremath{\boldsymbol{b}} \cdot \dot{\ens...
...b}}}{\partial t} + \mu \nabla B \right) \cdot \dot{\ensuremath{\boldsymbol{X}}}$ (30)

Using Eq. (7), i.e., $ \ensuremath{\boldsymbol{b}} \cdot \dot{\ensuremath{\boldsymbol{X}}} =
v_{\parallel}$, the above equation is written as

$\displaystyle m v_{\parallel} \dot{v}_{\parallel} = - \left( Z e \nabla \phi + ...
...}}}{\partial t} + \mu \nabla B \right) \cdot \dot{\ensuremath{\boldsymbol{X}}},$ (31)

which gives the time change rate of the parallel velocity $ v_{\parallel}$. By using $ \dot{\mu} = 0$ and $ y = \mu B$, the time change rate of the perpendicular velocity is written as
$\displaystyle \dot{y}$ $\displaystyle =$ $\displaystyle \mu \frac{d B}{d t}$  
  $\displaystyle =$ $\displaystyle \mu \left( \frac{\partial B}{\partial t} + \dot{\ensuremath{\boldsymbol{X}}} \cdot
\nabla B \right)$ (32)

Next, calculate the total time derivative of the particle energy. The particle energy $ \varepsilon$ is the sum of the kinetic and potential energy, i.e.,

$\displaystyle \varepsilon = \frac{1}{2} m v_{\parallel}^2 + y + Z e \phi,$ (33)

from which we obtain

$\displaystyle \dot{\varepsilon} = m v_{\parallel} \dot{v_{\parallel}} + \dot{y} + Z e \dot{\phi} .$ (34)

Using Eqs. (31) and (32), the right-hand side of Eq. (34) is written as
$\displaystyle m v_{\parallel} \dot{v_{\parallel}} + \dot{y} + Z e \dot{\phi}$ $\displaystyle =$ $\displaystyle -
\left( \frac{Z e}{c} \frac{\partial \ensuremath{\boldsymbol{A}}...
...} + \dot{\ensuremath{\boldsymbol{X}}} \cdot \nabla B \right) + Z e \dot{\phi}
.$  
  $\displaystyle =$ $\displaystyle - \left( \frac{Z e}{c} \frac{\partial \ensuremath{\boldsymbol{A}}...
...}} + \mu \frac{\partial B}{\partial t} + Z e \frac{\partial
\phi}{\partial t} .$ (35)

For the equilibrium case, electromagnetic field is independent of time, so the result of the above expression is zero, indicating that energy is a constant of the motion.

YouJun Hu 2014-05-19