Linear force operator

Using Eqs. (36) and (37) to eliminate $ p_1$ and $ \mathbf{B}_1$ from Eq. (35), we obtain

$\displaystyle - \omega^2 \rho_0 \ensuremath{\boldsymbol{\xi}}=\mathbf{F} (\ensuremath{\boldsymbol{\xi}}),$ (47)

where $ \mathbf{F} (\ensuremath{\boldsymbol{\xi}})$, the linear force operator, is given by

$\displaystyle \mathbf{F} (\ensuremath{\boldsymbol{\xi}}) = \nabla (\ensuremath{...
...tmu}_0 \times \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0)$ (48)

It can be proved that the linear force operator $ \mathbf{F} (\ensuremath{\boldsymbol{\xi}})$ is self-adjoint (or Hermitian) (I have not proven this), i.e., for any two functions $ \ensuremath{\boldsymbol{\eta}}_1$ and $ \ensuremath{\boldsymbol{\eta}}_2$ that satisfy the same boundary condition, we have

$\displaystyle \int \ensuremath{\boldsymbol{\eta}}_2 \cdot \mathbf{F} (\ensurema...
...\boldsymbol{\eta}}_1 \cdot \mathbf{F} (\ensuremath{\boldsymbol{\eta}}_2) d^3 x.$ (49)

As a consequence of the self-adjointness, the eigenvalue, $ \omega^2$, must be a real number, which implies that $ \omega$ itself is either purely real or purely imaginary. [Proof: Taking the complex conjugate of Eq. (47), we obtain

$\displaystyle - \rho_0 (\omega^2 \ensuremath{\boldsymbol{\xi}})^{\star} = [\mathbf{F}(\ensuremath{\boldsymbol{\xi}})]^{\star} .$ (50)

Note that the expression of $ \mathbf{F} (\ensuremath{\boldsymbol{\xi}})$ given in Eq. (48) have the property $ [\mathbf{F}(\ensuremath{\boldsymbol{\xi}})]^{\star}
=\mathbf{F} (\ensuremath{\boldsymbol{\xi}}^{\star})$, Using this, equation (50) is written

$\displaystyle - \omega^{2 \star} \rho_0 \ensuremath{\boldsymbol{\xi}}^{\star} =\mathbf{F} (\ensuremath{\boldsymbol{\xi}}^{\star}),$ (51)

Taking the scalar product of both sides of the above equation with $ \ensuremath{\boldsymbol{\xi}}$ and integrating over the entire volume of the system, gives

$\displaystyle - \omega^{2 \star} \int \rho_0 \ensuremath{\boldsymbol{\xi}}^{\st...
...ensuremath{\boldsymbol{\xi}}^{\star}) \cdot \ensuremath{\boldsymbol{\xi}}d^3 x,$ (52)

Using the self-ajointness of $ \mathbf{F}$, the above equation is written

$\displaystyle - \omega^{2 \star} \int \rho_0 \ensuremath{\boldsymbol{\xi}}^{\st...
...nsuremath{\boldsymbol{\xi}}) \cdot \ensuremath{\boldsymbol{\xi}}^{\star} d^3 x,$ (53)

$\displaystyle \Rightarrow - \omega^{2 \star} \int \rho_0 \ensuremath{\boldsymbo...
...ensuremath{\boldsymbol{\xi}} \cdot \ensuremath{\boldsymbol{\xi}}^{\star} d^3 x,$ (54)

$\displaystyle \Rightarrow (\omega^2 - \omega^{2 \star}) \int \rho_0 \ensuremath{\boldsymbol{\xi}} \cdot \ensuremath{\boldsymbol{\xi}}^{\star} d^3 x = 0$ (55)

Since $ \int \rho_0 \ensuremath{\boldsymbol{\xi}} \cdot \ensuremath{\boldsymbol{\xi}}^{\star} d^3 x$ is non-zero for any non-trivial eigenfunction, it follows from Eq. (55) that $ \omega^2 = \omega^{2 \star}$, i.e., $ \omega^2$ must be a real number, which implies that $ \omega$ is either purely real or purely imaginary.] It can also be proved that two eigenfunctions with different $ \omega^2$ are orthogonal to each other. [Proof:

$\displaystyle - \omega^{2 \star}_m \rho_0 \ensuremath{\boldsymbol{\xi}}^{\star}_m =\mathbf{F} (\ensuremath{\boldsymbol{\xi}}^{\star}_m),$ (56)

$\displaystyle - \omega^2_n \rho_0 \ensuremath{\boldsymbol{\xi}}_n =\mathbf{F} (\ensuremath{\boldsymbol{\xi}}_n),$ (57)

Taking the scalar product of both sides of Eq. (56) with $ \ensuremath{\boldsymbol{\xi}}_n$ and integrating over the entire volume of the system, gives

$\displaystyle \Rightarrow - \omega^{2 \star}_m \int \rho_0 \ensuremath{\boldsym...
...emath{\boldsymbol{\xi}}^{\star}_m) \cdot \ensuremath{\boldsymbol{\xi}}_n d^3 x,$ (58)

Taking the scalar product of both sides of Eq. (57) with $ \ensuremath{\boldsymbol{\xi}}_m^{\star}$ and integrating over the entire volume of the system, gives

$\displaystyle \Rightarrow - \omega^2_n \int \rho_0 \ensuremath{\boldsymbol{\xi}...
...emath{\boldsymbol{\xi}}_n) \cdot \ensuremath{\boldsymbol{\xi}}^{\star}_m d^3 x,$ (59)

Combining the above two equations, we obtain
$\displaystyle (\omega^{2 \star}_m - \omega^2_n) \int \rho_0
\ensuremath{\boldsymbol{\xi}}^{\star}_m \cdot \ensuremath{\boldsymbol{\xi}}_n d^3 x$ $\displaystyle =$ $\displaystyle \int
[\mathbf{F}(\ensuremath{\boldsymbol{\xi}}_n) \cdot \ensurema...
...emath{\boldsymbol{\xi}}^{\star}_m) \cdot \ensuremath{\boldsymbol{\xi}}_n] d^3 x$ (60)

Using the self-ajointness of $ \mathbf{F}$, we know the right-hand side of Eq. (60) is zero. Thus Eq. (60) is written

$\displaystyle (\omega^{2 \star}_m - \omega^2_n) \int \rho_0 \ensuremath{\boldsymbol{\xi}}^{\star}_m \cdot \ensuremath{\boldsymbol{\xi}}_n d^3 x = 0.$ (61)

Using $ \omega^{2 \star}_m = \omega_m^2$, the above equation is written

$\displaystyle (\omega^2_m - \omega^2_n) \int \rho_0 \ensuremath{\boldsymbol{\xi}}^{\star}_m \cdot \ensuremath{\boldsymbol{\xi}}_n d^3 x = 0.$ (62)

Since we assume $ \omega_m^2 \neq \omega_n^2$, the above equation reduces to

$\displaystyle \int \rho_0 \ensuremath{\boldsymbol{\xi}}^{\star}_m \cdot \ensuremath{\boldsymbol{\xi}}_n d^3 x = 0,$ (63)

i.e., $ \ensuremath{\boldsymbol{\xi}}_m^{\star}$ and $ \ensuremath{\boldsymbol{\xi}}_n$ are orthogonal to each other.]

yj 2015-09-04