The induction equation is given by Eq. (37), i.e.,
 |
(68) |
Next, consider the
component of the above equation. Taking
scalar product of the above equation with
, we obtain
 |
(69) |
![$\displaystyle \Rightarrow Q_{\psi} = \nabla \times \left[ \frac{\xi_{\psi}}{\ve...
...(\mathbf{B}_0 \times \nabla \Psi) \times \mathbf{B}_0 \right] \cdot \nabla \Psi$](img205.png) |
(70) |
![$\displaystyle \Rightarrow Q_{\psi} = \nabla \times \left[ \frac{\xi_{\psi}}{\ve...
...} \nabla \Psi \times \mathbf{B}_0 + \xi_s \nabla \Psi \right] \cdot \nabla \Psi$](img206.png) |
(71) |
![$\displaystyle \Rightarrow Q_{\psi} = \left[ \nabla \times \left( \frac{\xi_{\ps...
...thbf{B}_0 \right) + \nabla \times (\xi_s \nabla \Psi) \right] \cdot \nabla \Psi$](img207.png) |
(72) |
![$\displaystyle \Rightarrow Q_{\psi} = \left[ \nabla \times \left( \frac{\xi_{\ps...
...mathbf{B}_0 \right) + \nabla \xi_s \times \nabla \Psi \right] \cdot \nabla \Psi$](img208.png) |
(73) |
![$\displaystyle \Rightarrow Q_{\psi} = \left[ \nabla \times \left( \frac{\xi_{\ps...
...\Psi \vert^2} \nabla \Psi \times \mathbf{B}_0 \right) \right] \cdot \nabla \Psi$](img209.png) |
(74) |
![$\displaystyle \Rightarrow Q_{\psi} = \left[ (\mathbf{B}_0 \cdot \nabla) \left( ...
...a \Psi \vert^2} \nabla \Psi \cdot \nabla \mathbf{B}_0 \right] \cdot \nabla \Psi$](img210.png) |
(75) |
![$\displaystyle Q_{\psi} = \left[ \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\...
...a \Psi \vert^2} \nabla \Psi \cdot \nabla \mathbf{B}_0 \right] \cdot \nabla \Psi$](img211.png) |
(76) |
![$\displaystyle Q_{\psi} = \left[ \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\...
...a \Psi \vert^2} \nabla \Psi \cdot \nabla \mathbf{B}_0 \right] \cdot \nabla \Psi$](img211.png) |
(77) |
![$\displaystyle Q_{\psi} = \left[ \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\...
...\Psi \vert^2} (\nabla \Psi \cdot \nabla \mathbf{B}_0) \cdot \nabla \Psi \right]$](img212.png) |
(78) |
Excluding
terms, the terms on the
right hand side (r.h.s) of the above equation can be written
Using
, we obtain
0 |
 |
![$\displaystyle \nabla \Psi \cdot \nabla (\nabla \Psi \cdot \mathbf{B}_0) = \nabl...
...[\mathbf{B}_0 \cdot \nabla \nabla \Psi + \nabla \Psi \cdot \nabla
\mathbf{B}_0]$](img221.png) |
(81) |
The r.h.s of the above equation is exactly the term appearing on the
right-hand side of Eq. (79). Thus we obtain
 |
(82) |
which agrees with Eq. (20) in Cheng's paper[3].
yj
2015-09-04