$ \nabla \Psi $ component of induction equation

The induction equation is given by Eq. (37), i.e.,

$\displaystyle \mathbf{B}_1 = \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0) .$ (68)

Next, consider the $ \nabla \Psi $ component of the above equation. Taking scalar product of the above equation with $ \nabla \Psi $, we obtain

$\displaystyle \mathbf{B}_1 \cdot \nabla \Psi = \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0) \cdot \nabla \Psi .$ (69)

$\displaystyle \Rightarrow Q_{\psi} = \nabla \times \left[ \frac{\xi_{\psi}}{\ve...
...(\mathbf{B}_0 \times \nabla \Psi) \times \mathbf{B}_0 \right] \cdot \nabla \Psi$ (70)

$\displaystyle \Rightarrow Q_{\psi} = \nabla \times \left[ \frac{\xi_{\psi}}{\ve...
...} \nabla \Psi \times \mathbf{B}_0 + \xi_s \nabla \Psi \right] \cdot \nabla \Psi$ (71)

$\displaystyle \Rightarrow Q_{\psi} = \left[ \nabla \times \left( \frac{\xi_{\ps...
...thbf{B}_0 \right) + \nabla \times (\xi_s \nabla \Psi) \right] \cdot \nabla \Psi$ (72)

$\displaystyle \Rightarrow Q_{\psi} = \left[ \nabla \times \left( \frac{\xi_{\ps...
...mathbf{B}_0 \right) + \nabla \xi_s \times \nabla \Psi \right] \cdot \nabla \Psi$ (73)

$\displaystyle \Rightarrow Q_{\psi} = \left[ \nabla \times \left( \frac{\xi_{\ps...
...\Psi \vert^2} \nabla \Psi \times \mathbf{B}_0 \right) \right] \cdot \nabla \Psi$ (74)

$\displaystyle \Rightarrow Q_{\psi} = \left[ (\mathbf{B}_0 \cdot \nabla) \left( ...
...a \Psi \vert^2} \nabla \Psi \cdot \nabla \mathbf{B}_0 \right] \cdot \nabla \Psi$ (75)

$\displaystyle Q_{\psi} = \left[ \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\...
...a \Psi \vert^2} \nabla \Psi \cdot \nabla \mathbf{B}_0 \right] \cdot \nabla \Psi$ (76)

$\displaystyle Q_{\psi} = \left[ \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\...
...a \Psi \vert^2} \nabla \Psi \cdot \nabla \mathbf{B}_0 \right] \cdot \nabla \Psi$ (77)

$\displaystyle Q_{\psi} = \left[ \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\...
...\Psi \vert^2} (\nabla \Psi \cdot \nabla \mathbf{B}_0) \cdot \nabla \Psi \right]$ (78)

Excluding $ (\mathbf{B}_0 \cdot \nabla) \xi_{\psi}$ terms, the terms on the right hand side (r.h.s) of the above equation can be written
    $\displaystyle \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\mathbf{B}_0 \cdot ...
... \nabla \Psi
\vert^2} (\nabla \Psi \cdot \nabla \mathbf{B}_0) \cdot \nabla \Psi$  
    $\displaystyle = \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\mathbf{B}_0 \cdo...
... \nabla
\Psi \vert^2} (\nabla \Psi \cdot \nabla \mathbf{B}_0) \cdot \nabla \Psi$  
    $\displaystyle = \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} (\mathbf{B}_0 \cdo...
... \nabla
\Psi \vert^2} (\nabla \Psi \cdot \nabla \mathbf{B}_0) \cdot \nabla \Psi$  
    $\displaystyle = - \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} \nabla \Psi \cdo...
... \nabla \Psi
\vert^2} (\nabla \Psi \cdot \nabla \mathbf{B}_0) \cdot \nabla \Psi$  
    $\displaystyle = - \frac{\xi_{\psi}}{\vert \nabla \Psi \vert^2} \nabla \Psi \cdo...
...\mathbf{B}_0 \cdot \nabla) \nabla \Psi + \nabla \Psi \cdot \nabla
\mathbf{B}_0]$ (79)

Using $ \nabla (\mathbf{A} \cdot \mathbf{B}) =\mathbf{B} \cdot \nabla
\mathbf{A}+\math...
...f{A} \times \nabla \times
\mathbf{B}+\mathbf{B} \times \nabla \times \mathbf{A}$, we obtain
$\displaystyle \nabla (\nabla \Psi \cdot \mathbf{B}_0)$ $\displaystyle =$ $\displaystyle \mathbf{B}_0 \cdot \nabla
\nabla \Psi + \nabla \Psi \cdot \nabla \mathbf{B}_0 + \nabla \Psi \times
\nabla \times \mathbf{B}_0$ (80)


0 $\displaystyle =$ $\displaystyle \nabla \Psi \cdot \nabla (\nabla \Psi \cdot \mathbf{B}_0) = \nabl...
...[\mathbf{B}_0 \cdot \nabla \nabla \Psi + \nabla \Psi \cdot \nabla
\mathbf{B}_0]$ (81)

The r.h.s of the above equation is exactly the term appearing on the right-hand side of Eq. (79). Thus we obtain

$\displaystyle Q_{\psi} =\mathbf{B}_0 \cdot \nabla \xi_{\psi},$ (82)

which agrees with Eq. (20) in Cheng's paper[3].

yj 2015-09-04