$ B_0 \times \nabla \Psi $ component of induction equation

The $ \mathbf{B}_0 \times
\nabla \Psi$ component of the induction equation is given by

$\displaystyle \mathbf{B}_1 \cdot \mathbf{B}_0 \times \nabla \Psi = \nabla \time...
...\boldsymbol{\xi}} \times \mathbf{B}_0) \cdot (\mathbf{B}_0 \times \nabla \Psi),$ (83)

which can be further written as
$\displaystyle B^2_0 Q_s$ $\displaystyle =$ $\displaystyle \nabla \times \left( \xi_{\psi} \frac{\nabla \Psi \times
\mathbf{...
...si \vert^2} + \xi_s \nabla \Psi \right) \cdot
(\mathbf{B}_0 \times \nabla \Psi)$  
  $\displaystyle =$ $\displaystyle \left[ \nabla \times \left( \xi_{\psi} \frac{\nabla \Psi \times
\...
...\nabla \xi_s \times \nabla \Psi
\right] \cdot (\mathbf{B}_0 \times \nabla \Psi)$  
  $\displaystyle =$ $\displaystyle \left[ \xi_{\psi} \nabla \times \frac{\nabla \Psi \times
\mathbf{...
...\nabla \xi_s \times \nabla
\Psi \right] \cdot (\mathbf{B}_0 \times \nabla \Psi)$  
  $\displaystyle =$ $\displaystyle \left[ \xi_{\psi} \nabla \times \frac{\nabla \Psi \times
\mathbf{...
...\nabla \xi_s \times \nabla \Psi \right]
\cdot (\mathbf{B}_0 \times \nabla \Psi)$  
  $\displaystyle =$ $\displaystyle - \vert \nabla \psi \vert^2 S \xi_{\psi} + (\nabla \xi_s \times \nabla \Psi)
\cdot (\mathbf{B}_0 \times \nabla \Psi),$ (84)

where

$\displaystyle S = \left( \nabla \times \frac{\mathbf{B}_0 \times \nabla \Psi}{\...
...ght) \cdot \frac{(\mathbf{B}_0 \times \nabla \Psi)}{\vert \nabla \Psi \vert^2},$ (85)

is the negative local magnetic shear. Using $ (\mathbf{A} \times \mathbf{B})
\cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf...
...\cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D}) (\mathbf{B}
\cdot \mathbf{C})$, equation (84) is written as

$\displaystyle B^2_0 Q_s = - \vert \nabla \Psi \vert^2 S \xi_{\psi} + \vert \nabla \Psi \vert^2 \mathbf{B}_0 \cdot \nabla \xi_s,$ (86)

$\displaystyle \Rightarrow Q_s = \left( \frac{\vert \nabla \Psi \vert}{B_0} \right)^2 (\mathbf{B}_0 \cdot \nabla \xi_s - S \xi_{\psi}) .$ (87)

Eq. (87) agrees with Eq. (21) in Cheng's paper[3].

yj 2015-09-04