$ B_0$ component of induction equation

The component of the induction equation in the direction of $ \mathbf{B}_0$ is written as

$\displaystyle \mathbf{B}_0 \cdot \mathbf{B}_1 =\mathbf{B}_0 \cdot \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0)$ (88)

$\displaystyle \Rightarrow Q_b =\mathbf{B}_0 \cdot \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0)$ (89)

The term on right-hand side of the above equation is written as
$\displaystyle \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0)$ $\displaystyle =$ $\displaystyle \nabla \times
\left( \frac{\nabla \Psi \times \mathbf{B}_0}{\vert...
...\frac{\xi_s}{B^2} (\mathbf{B}_0 \times \nabla \Psi) \times \mathbf{B}_0
\right)$  
  $\displaystyle =$ $\displaystyle \nabla \times \left( \frac{\nabla \Psi \times \mathbf{B}_0}{\vert \nabla
\Psi \vert^2} \xi_{\psi} + \xi_s \nabla \Psi \right)$  
  $\displaystyle =$ $\displaystyle \xi_{\psi} \nabla \times \frac{\nabla \Psi \times \mathbf{B}_0}{\...
...es
\mathbf{B}_0}{\vert \nabla \Psi \vert^2} + \nabla \xi_s \times \nabla \Psi .$ (90)

Using this, the right-hand side of Eq. (89) is written as
$\displaystyle \mathbf{B}_0 \cdot \nabla \times (\ensuremath{\boldsymbol{\xi}} \times \mathbf{B}_0)$ $\displaystyle =$ $\displaystyle \xi_{\psi} \mathbf{B}_0 \cdot \nabla \times \frac{\nabla \Psi \ti...
... \cdot \nabla
\xi_{\psi} + (\nabla \Psi \times \mathbf{B}_0) \cdot \nabla \xi_s$  
  $\displaystyle =$ $\displaystyle \xi_{\psi} \mathbf{B}_0 \cdot \nabla \times \frac{\nabla \Psi \ti...
... \cdot \nabla \xi_{\psi} + (\nabla \Psi \times
\mathbf{B}_0) \cdot \nabla \xi_s$ (91)
  $\displaystyle =$ $\displaystyle \xi_{\psi} \mathbf{B}_0 \cdot \left( -\mathbf{B}_0 \nabla \cdot
\...
... \cdot \nabla \xi_{\psi} + (\nabla \Psi \times
\mathbf{B}_0) \cdot \nabla \xi_s$  
  $\displaystyle =$ $\displaystyle \xi_{\psi} \mathbf{B}_0 \cdot \left( \mathbf{B}_0 \cdot \nabla
\f...
... \cdot \nabla \xi_{\psi} - (\mathbf{B}_0 \times \nabla
\Psi) \cdot \nabla \xi_s$ (92)

Before we try to simplify the above equation, we derive the expression for the divergence of $ \ensuremath{\boldsymbol{\xi}}$, which is written as
$\displaystyle \nabla \cdot \ensuremath{\boldsymbol{\xi}}$ $\displaystyle =$ $\displaystyle \nabla \cdot \left[ \frac{\nabla \Psi}{\vert
\nabla \Psi \vert^2}...
..._0 \times \nabla
\Psi)}{B^2_0} \xi_s + \frac{\mathbf{B}_0}{B^2_0} \xi_b \right]$  
  $\displaystyle =$ $\displaystyle \frac{\nabla \Psi \cdot \nabla \xi_{\psi}}{\vert \nabla \Psi \ver...
...bla \Psi)}{B^2_0} +\mathbf{B}_0
\cdot \nabla \left( \frac{\xi_b}{B_0^2} \right)$ (93)

It can be proved that the fourth term of the above equation can be written as (refer to (9.8) for the proof)
$\displaystyle \nabla \cdot \frac{(\mathbf{B}_0 \times \nabla \Psi)}{B^2_0}$ $\displaystyle =$ $\displaystyle - 2
\frac{1}{B_0^2} \ensuremath{\boldsymbol{\kappa}} \cdot (\mathbf{B}_0 \times \nabla \Psi) .$ (94)

Then Eq. (93) is written as

$\displaystyle \nabla \cdot \ensuremath{\boldsymbol{\xi}}= \frac{\nabla \Psi \cd...
...imes \nabla \Psi) +\mathbf{B}_0 \cdot \nabla \left( \frac{\xi_b}{B_0^2} \right)$ (95)

Eq. (95) agrees with Eq. (23) in Cheng's paper, but a $ B_0^2$ factor is missed in the fourth term of Cheng's equation[3]. Using Eq. (95), Eq. (92) is written as

$\displaystyle \mathbf{B}_0 \cdot \nabla \times (\ensuremath{\boldsymbol{\xi}} \...
...Psi) \xi_s + B_0^2 \mathbf{B}_0 \cdot \nabla \left( \frac{\xi_b}{B^2_0} \right)$ (96)

It can be proved that

$\displaystyle \mathbf{B}_0 \cdot \left( \mathbf{B}_0 \cdot \nabla \frac{\nabla ...
... \Psi \frac{B^2}{\vert \nabla \Psi \vert^2} +{\textmu}_0 \frac{d p_0}{d \Psi} .$ (97)

(Refer to Sec. 9.10 for the proof.) Then Eq. (96) is written as

$\displaystyle \mathbf{B}_0 \cdot \nabla \times (\ensuremath{\boldsymbol{\xi}} \...
...si) \xi_s + B_0^2 \mathbf{B}_0 \cdot \nabla \left( \frac{\xi_b}{B^2_0} \right),$ (98)

and the component of the induction equation in the direction of $ \mathbf{B}_0$ [Eq. (89)] is finally written as

$\displaystyle Q_b = \xi_{\psi} \left( - \frac{2 B^2_0}{\vert \nabla \Psi \vert^...
...Psi) \xi_s + B_0^2 \mathbf{B}_0 \cdot \nabla \left( \frac{\xi_b}{B^2_0} \right)$ (99)

Eq. (99) agrees with Eq. (22) in Cheng's paper[3].

yj 2015-09-04