Fourier expansion over $ \theta $ and $ \zeta $

A perturbation $ G (\psi, \theta, \varphi)$ must be a periodic function of the poloidal angle $ \theta $ and toroidal angle $ \zeta $, and thus can be expanded as the following two-dimensional Fourier series,

$\displaystyle G (\psi, \theta, \zeta) = \sum_{n = - \infty}^{\infty} \sum_{m = - \infty}^{\infty} G_{n m} (\psi) e^{i (m \theta - n \zeta)},$ (170)

where the expansion coefficient $ G_{n m}$ is given by

$\displaystyle G_{n m} (\psi) = \frac{1}{(2 \pi)^2} \int_0^{2 \pi} \int_0^{2 \pi} G (\psi, \theta, \zeta) e^{i (n \zeta - m \theta)} d \theta d \zeta .$ (171)

Our next task is to derive the equations that the coefficients $ G_{n m}$ must satisfy.



yj 2015-09-04