Surface differential operators

The MHD eigenmode equations (154) and (161) involve two surface operators, $ \mathbf{B}_0 \cdot \nabla$ and $ (\mathbf{B}_0 \times
\nabla \Psi / B_0^2) \cdot \nabla$ (they are called surface operators because they involve only differential on magnetic surfaces). Next, we provide the form of the two operators in flux coordinate system $ (\psi, \theta, \zeta)$. Using Eq. (165), the $ \mathbf{B}_0 \cdot \nabla$ operator (usually called magnetic differential operator) is written

$\displaystyle \mathbf{B}_0 \cdot \nabla = - \Psi' \mathcal{J}^{- 1} \left( \frac{\partial}{\partial \theta} + q \frac{\partial}{\partial \zeta} \right) .$ (168)

Using the covariant form of the equilibrium magnetic field [Eq. (166)], the $ (\mathbf{B}_0 \times
\nabla \Psi / B_0^2) \cdot \nabla$ operator is written

$\displaystyle \frac{\mathbf{B}_0 \times \nabla \Psi}{B_0^2} \cdot \nabla = \lef...
...a} + \Psi' g \frac{\mathcal{J}^{- 1}}{B_0^2} \frac{\partial}{\partial \theta} .$ (169)



yj 2015-09-04