Surface operator acting on perturbation

Next, consider the calculation of the surface operators acting on the above perturbation. Using Eq. (168), we obtain

$\displaystyle \mathbf{B}_0 \cdot \nabla (a G)$ $\displaystyle =$ $\displaystyle - \Psi' \mathcal{J}^{- 1} \sum_{n = -
\infty}^{\infty} \sum_{m = ...
...a}{\partial \theta} + i (m - n q) a \right] G_{n m} e^{i (m \theta - n
\zeta)},$ (172)

where $ a = a (\psi, \theta)$ is a known function that is independent of $ \zeta $. Similarly, we have
    $\displaystyle \mathbf{B}_0 \cdot \nabla (a\mathbf{B}_0 \cdot \nabla G)$  
  $\displaystyle =$ $\displaystyle - \Psi' \mathbf{B}_0 \cdot \nabla \left[ a\mathcal{J}^{- 1} \sum_{m,
n} i (m - n q) G_{n m} (\psi) e^{i (m \theta - n \zeta)} \right]$  
  $\displaystyle =$ $\displaystyle (\Psi')^2 \mathcal{J}^{- 1} \sum_{m, n} \left[
\frac{\partial}{\p...
...\mathcal{J}^{- 1} \right] i (m - n q) G_{n m} (\psi) e^{i (m \theta - n
\zeta)}$  
  $\displaystyle =$ $\displaystyle (\Psi')^2 \sum_{m, n} \left[ i (m - n q) \mathcal{J}^{- 1}
\frac{...
...- n q)^2
a\mathcal{J}^{- 2} \right] G_{n m} (\psi) e^{i (m \theta - n \zeta)} .$ (173)

Using Eq. (169), we obtain
    $\displaystyle \left( \frac{\mathbf{B}_0 \times \nabla \Psi}{B_0^2} \right) \cdot
\nabla G$  
  $\displaystyle =$ $\displaystyle \left( 1 + \Psi' g q \frac{\mathcal{J}^{- 1}}{B_0^2} \right) (- i...
...hcal{J}^{- 1}}{B_0^2} \sum_{m, n} i m G_{n m} (\psi) e^{i (m
\theta - n \zeta)}$  
  $\displaystyle =$ $\displaystyle \sum_{m, n} \left[ i (m - n q) \Psi' g \frac{\mathcal{J}^{-
1}}{B_0^2} - i n \right] G_{n m} (\psi) e^{i (m \theta - n \zeta)} .$ (174)

yj 2015-09-04