Magnetic curvature

In this section, we derive formulas for calculating the geodesic curvature and normal curvature in magnetic surface coordinate system $ (\psi, \theta, \phi)$. The derivation looks tedious but the final results are compact (especially for the geodesic curvature $ \kappa _s$). The magnetic curvature is defined by $ \ensuremath{\boldsymbol{\kappa}}=\mathbf{b} \cdot \nabla \mathbf{b}$, which can be further written as

$\displaystyle \ensuremath{\boldsymbol{\kappa}}$ $\displaystyle =$ $\displaystyle \frac{1}{B_0} \mathbf{B}_0 \cdot \nabla
\frac{\mathbf{B}_0}{B_0}$  
  $\displaystyle =$ $\displaystyle \frac{1}{B_0} (\nabla \Psi \times \nabla \phi + g \nabla \phi) \cdot
\nabla \frac{\mathbf{B}_0}{B_0}$ (261)

In magnetic surface coordinate system $ (\psi, \theta, \phi)$, equation (261) is written as
$\displaystyle \ensuremath{\boldsymbol{\kappa}}$ $\displaystyle =$ $\displaystyle \frac{1}{B_0} (\Psi' \triangledown \psi \times
\triangledown \phi + g \triangledown \phi) \cdot \nabla
\frac{\mathbf{B}_0}{B_0}$  
  $\displaystyle =$ $\displaystyle \frac{\Psi'}{B_0} (\triangledown \psi \times \triangledown \phi)
...
...}{B_0} + \frac{g}{B_0} \triangledown \phi
\cdot \nabla \frac{\mathbf{B}_0}{B_0}$  
  $\displaystyle =$ $\displaystyle - \frac{\Psi'}{B_0} \mathcal{J}^{- 1} \frac{\partial}{\partial
\t...
...{1}{R^2} \frac{\partial}{\partial \phi} \left(
\frac{\mathbf{B}_0}{B_0} \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\Psi'}{B_0} \mathcal{J}^{- 1} \frac{\partial}{\partial
\t...
...riangledown \psi \times
\triangledown \phi + g \triangledown \phi}{B_0} \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\Psi'^2}{B_0} \mathcal{J}^{- 1} \frac{\partial}{\partial
...
...i \times
\triangledown \phi) - \frac{g^2}{B_0^2} \frac{1}{R^3} \hat{\mathbf{R}}$ (262)

Using $ \nabla \psi = - \frac{R}{\mathcal{J}} (Z_{\theta} \hat{\mathbf{R}} -
R_{\theta} \hat{\mathbf{Z}})$, we obtain $ \nabla \psi \times \triangledown
\phi = - \frac{1}{\mathcal{J}} (Z_{\theta} \hat{\mathbf{Z}} + R_{\theta}
\hat{\mathbf{R}})$. Using this, the three partial derivatives in the above equation are written respectively as
$\displaystyle \frac{\partial}{\partial \theta} \left( \frac{\triangledown \psi \times
\triangledown \phi}{B_0} \right)$ $\displaystyle =$ $\displaystyle - (Z_{\theta} \hat{\mathbf{Z}} +
R_{\theta} \hat{\mathbf{R}}) \fr...
...{B_0}
(Z_{\theta \theta} \hat{\mathbf{Z}} + R_{\theta \theta} \hat{\mathbf{R}})$  
  $\displaystyle =$ $\displaystyle - \left[ \frac{\partial}{\partial \theta} \left( \frac{\mathcal{J...
...ta} +
\frac{\mathcal{J}^{- 1}}{B_0} Z_{\theta \theta} \right] \hat{\mathbf{Z}},$ (263)

$\displaystyle \frac{\partial}{\partial \theta} \left( \frac{\triangledown \phi}...
...al \theta} \left( \frac{1}{R B_0} \right) \hat{\ensuremath{\boldsymbol{\phi}}},$ (264)

$\displaystyle \frac{\partial}{\partial \phi} (\triangledown \psi \times \triang...
...hi) = - \frac{1}{\mathcal{J}} R_{\theta} \hat{\ensuremath{\boldsymbol{\phi}}} .$ (265)

Using these, $ \ensuremath{\boldsymbol{\kappa}}$ is written as
$\displaystyle \ensuremath{\boldsymbol{\kappa}}$ $\displaystyle =$ $\displaystyle \frac{\Psi'^2}{B_0} \mathcal{J}^{- 1} \left\{ \left[
\frac{\parti...
...rac{\mathcal{J}^{-
1}}{B_0} Z_{\theta \theta} \right] \hat{\mathbf{Z}} \right\}$  
    $\displaystyle - \frac{g \Psi'}{B_0} \mathcal{J}^{- 1} \frac{\partial}{\partial
...
...suremath{\boldsymbol{\phi}}} -
\frac{g^2}{B_0^2} \frac{1}{R^3} \hat{\mathbf{R}}$  



Subsections
yj 2015-09-04