proof

In this subsection, we prove that

$\displaystyle \Pi \equiv (\mathbf{B} \times \nabla \psi) \cdot \left[ Q_s \left...
...\mathbf{B}+ (\nabla \psi \cdot \nabla
\mathbf{B}) \times \mathbf{B}] \right], $

is zero.
    $\displaystyle \Pi = Q_s \left( \mathbf{B} \cdot \nabla \frac{1}{\vert \nabla \p...
...dot \nabla \mathbf{B}) \times \mathbf{B} \cdot
(\mathbf{B} \times \nabla \psi)]$  
    $\displaystyle = Q_s \left( \mathbf{B} \cdot \nabla \frac{1}{\vert \nabla \psi \...
...mes \nabla \psi) \times \mathbf{B} \cdot (\nabla \psi
\cdot \nabla \mathbf{B})]$  
    $\displaystyle = Q_s \left( \mathbf{B} \cdot \nabla \frac{1}{\vert \nabla \psi \...
...bla \nabla \psi) - B^2 \nabla \psi \cdot
(\nabla \psi \cdot \nabla \mathbf{B})]$ (352)
    $\displaystyle = Q_s \left( \mathbf{B} \cdot \nabla \frac{1}{\vert \nabla \psi \...
...nabla \nabla \psi) - (\nabla \psi) \cdot
(\nabla \psi \cdot \nabla \mathbf{B})]$  
    $\displaystyle = Q_s \left( \mathbf{B} \cdot \nabla (\vert \nabla \psi \vert^2) ...
...nabla
\nabla \psi) - (\nabla \psi) \cdot (\nabla \psi \cdot \nabla \mathbf{B})]$  
    $\displaystyle = 2 Q_s \nabla \psi \cdot \mathbf{B} \cdot \nabla \nabla \psi \le...
...nabla \nabla \psi) - (\nabla \psi)
\cdot (\nabla \psi \cdot \nabla \mathbf{B})]$  
    $\displaystyle \left. = - Q_s \frac{B^2}{\vert \nabla \psi \vert^2} \nabla \psi ...
...\psi \vert^2}
(\nabla \psi) \cdot (\nabla \psi \cdot \nabla \mathbf{B}) \right]$  
    $\displaystyle = - Q_s \frac{B^2}{\vert \nabla \psi \vert^2} \nabla \psi \cdot [\mathbf{B}
\cdot \nabla \nabla \psi + (\nabla \psi \cdot \nabla \mathbf{B})]$  
    $\displaystyle = - Q_s \frac{B^2}{\vert \nabla \psi \vert^2} \nabla \psi \cdot [...
...si \times \nabla \times \mathbf{B}+\mathbf{B} \times \nabla \times \nabla
\psi]$  
    $\displaystyle = - Q_s \frac{B^2}{\vert \nabla \psi \vert^2} \nabla \psi \cdot \nabla
(\mathbf{B} \cdot \nabla \psi)$  
    $\displaystyle = 0$  

where the last second equality is due to the fact that
$\displaystyle \nabla (\mathbf{A} \cdot \mathbf{B})$ $\displaystyle =$ $\displaystyle \mathbf{B} \cdot \nabla
\mathbf{A}+\mathbf{A} \cdot \nabla \mathb...
...f{A} \times \nabla
\times \mathbf{B}+\mathbf{B} \times \nabla \times \mathbf{A}$ (353)

yj 2015-09-04