proof 2

We want to prove that

$\displaystyle \mathbf{B}_0 \cdot [(\mathbf{B}_0 \cdot \nabla) \nabla \psi - (\n...
...es \frac{\nabla \psi}{\vert \nabla \psi \vert^2} = \vert \nabla \psi \vert^2 S,$ (354)

where $ S = \left( \mathbf{B}_0 \times \frac{\nabla \psi}{\vert \nabla \psi \vert^2}
\...
...left( \mathbf{B}_0 \times \frac{\nabla \psi}{\vert
\nabla \psi \vert^2} \right)$. The right-hand side of Eq. (354) is written as
$\displaystyle \vert \nabla \psi \vert^2 \left( \mathbf{B}_0 \times \frac{\nabla...
...left( \mathbf{B}_0 \times
\frac{\nabla \psi}{\vert \nabla \psi \vert^2} \right)$ $\displaystyle =$ $\displaystyle (\mathbf{B}_0 \times
\nabla \psi) \cdot \left[ - (\mathbf{B}_0 \c...
...abla \psi}{\vert \nabla \psi \vert^2} \cdot \nabla
\right) \mathbf{B}_0 \right]$  
  $\displaystyle =$ $\displaystyle - (\mathbf{B}_0 \times \nabla \psi) \cdot (\mathbf{B}_0 \cdot \na...
...vert \nabla \psi \vert^2} \right) \cdot (\nabla \psi \cdot
\nabla) \mathbf{B}_0$  
  $\displaystyle =$ $\displaystyle \left[ (\mathbf{B}_0 \cdot \nabla) \frac{\nabla \psi}{\vert \nabl...
...\times \frac{\nabla \psi}{\vert \nabla \psi \vert^2}
\right] \cdot \mathbf{B}_0$ (355)
  $\displaystyle =$ $\displaystyle \left[ \frac{1}{\vert \nabla \psi \vert^2} (\mathbf{B}_0 \cdot \n...
...\times \frac{\nabla \psi}{\vert \nabla \psi \vert^2}
\right] \cdot \mathbf{B}_0$  
  $\displaystyle =$ $\displaystyle \mathbf{B}_0 \cdot [(\mathbf{B}_0 \cdot \nabla) \nabla \psi - (\n...
...cdot \nabla)\mathbf{B}_0] \times \frac{\nabla \psi}{\vert \nabla \psi
\vert^2},$ (356)

which is exactly the left-hand side of Eq. (354). Thus Eq. (354) is proved.



yj 2015-09-04