proof: The derivation of Eq. (107)

Using Eq. (65), we obtain

$\displaystyle \nabla \times \mathbf{B}_1$ $\displaystyle =$ $\displaystyle \nabla \times \left( \frac{Q_{\psi}}{\vert
\nabla \psi \vert^2} \...
...ert^2} (\mathbf{B}_0
\times \nabla \psi) + \frac{Q_b}{B^2} \mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle \nabla \frac{Q_{\psi}}{\vert \nabla \psi \vert^2} \times \nabla \...
...ac{Q_b}{B^2_0} \times \mathbf{B}_0 +
\frac{Q_b}{B^2_0} {\textmu}_0 \mathbf{J}_0$  
  $\displaystyle =$ $\displaystyle \nabla \frac{Q_{\psi}}{\vert \nabla \psi \vert^2} \times \nabla \...
...ac{Q_b}{B^2_0} \times \mathbf{B}_0 +
\frac{Q_b}{B^2_0} {\textmu}_0 \mathbf{J}_0$ (335)

Using this, the second term on the right-hand side of Eq. (106) is written
$\displaystyle \nabla \psi \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_1) \times
\mathbf{B}_0$ $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \mathbf{B}_0 \cdot \nabla \psi \times
(\nabla \times \mathbf{B}_1)$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \mathbf{B}_0 \cdot \nabla \psi \times \left( \n...
...2_0} \times \mathbf{B}_0 + \frac{Q_b}{B^2_0} {\textmu}_0
\mathbf{J}_0 \right) .$ (336)

The first term of Eq. (336) is written
$\displaystyle {\textmu}_0^{- 1} \mathbf{B}_0 \cdot \nabla \psi \times \left( \nabla
\frac{Q_{\psi}}{\vert \nabla \psi \vert^2} \times \nabla \psi \right)$ $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \mathbf{B}_0 \cdot \left[ \vert \nabla \psi \ve...
...t \nabla
\frac{Q_{\psi}}{\vert \nabla \psi \vert^2} \right) \nabla \psi \right]$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \vert \nabla \psi \vert^2 \mathbf{B}_0 \cdot \nabla
\frac{Q_{\psi}}{\vert \nabla \psi \vert^2}$ (337)

The last equality is due to $ \mathbf{B}_0 \cdot \nabla \psi = 0$. The second term of Eq. (336) is written
$\displaystyle {\textmu}_0^{- 1} \mathbf{B}_0 \cdot \nabla \psi \times \frac{Q_s}{\vert \nabla
\psi \vert^2} \nabla \times (\mathbf{B}_0 \times \nabla \psi)$ $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \frac{Q_s}{\vert \nabla \psi \vert^2} \mathbf{B}_0 \cdot [\nabla
\times (\nabla \psi \times \mathbf{B}_0)] \times \nabla \psi$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \frac{Q_s}{\vert \nabla \psi \vert^2} \mathbf{B...
...abla)
\nabla \psi - (\nabla \psi \cdot \nabla) \mathbf{B}_0] \times \nabla \psi$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} Q_s \frac{1}{\vert \nabla \psi \vert^2} \mathbf...
...abla) \nabla \psi - (\nabla \psi \cdot \nabla)
\mathbf{B}_0] \times \nabla \psi$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} Q_s \vert \nabla \psi \vert^2 S$ (338)

The last equality is due to that the coefficients before $ Q_s$, i.e.,

$\displaystyle \frac{1}{\vert \nabla \psi \vert^2} \mathbf{B}_0 \cdot [(\mathbf{...
...la)
\nabla \psi - (\nabla \psi \cdot \nabla) \mathbf{B}_0] \times \nabla \psi
$

is equal to $ \vert \nabla \psi \vert^2 S$ (refer to Sec. 9.7 for the proof). The third term of Eq. (336) is written
$\displaystyle {\textmu}_0^{- 1} \mathbf{B}_0 \cdot \nabla \psi \times \left( \nabla
\frac{Q_b}{B^2_0} \times \mathbf{B}_0 \right)$ $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1}
\mathbf{B}_0 \cdot \left[ 0 - \left( \nabla \psi \cdot \nabla
\frac{Q_b}{B^2_0} \right) \mathbf{B}_0 \right]$  
  $\displaystyle =$ $\displaystyle -{\textmu}_0^{- 1} \left( \nabla \frac{Q_b}{B^2_0} \cdot \nabla \psi
\right) B^2_0 .$ (339)

Using Eqs. (337)-(339) in Eq. (336) yields

$\displaystyle \nabla \psi \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_1) ...
... B^2_0 + \frac{Q_b}{B^2_0} \mathbf{B}_0 \cdot (\nabla \psi \times \mathbf{J}_0)$ (340)

Now we calculate the $ \nabla \psi \cdot {\textmu}_0^{- 1} (\nabla \times
\mathbf{B}_0) \times \mathbf{B}_1$ term appearing in Eq. (106), which can be written as
$\displaystyle \nabla \psi \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_0) \times
\mathbf{B}_1$ $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot \nabla \psi \times \mathbf{B}_1$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot \nabla \psi \times \left( \frac{Q_s}{\vert \n...
...t^2} (\mathbf{B}_0 \times \nabla \psi) + \frac{Q_b}{B^2_0} \mathbf{B}_0
\right)$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot \left( \frac{Q_s}{\vert \nabla \psi \vert^2} ...
...\times \nabla \psi) + \frac{Q_b}{B^2_0} \nabla \psi
\times \mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot \left( \frac{Q_s}{\vert \nabla \psi \vert^2} ...
...vert^2 \mathbf{B}_0 + \frac{Q_b}{B^2_0} \nabla \psi \times \mathbf{B}_0
\right)$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot \mathbf{B}_0 Q_s -\mathbf{J}_0 \cdot \left(
\frac{Q_b}{B^2_0} \nabla \psi \times \mathbf{B}_0 \right) .$ (341)

Gathering the terms involving $ Q_b$ in Eqs. (340) and (341), we obtain
    $\displaystyle -{\textmu}_0^{- 1} \left( \nabla \frac{Q_b}{B^2_0} \cdot \nabla \...
...{J}_0) + \frac{Q_b}{B^2_0} \mathbf{B}_0 \cdot (\nabla \psi \times
\mathbf{J}_0)$  
    $\displaystyle = - \left[ \left( \frac{1}{B^2} \nabla Q_b + Q_b \nabla \frac{1}{...
... B^2_0 + 2
\frac{Q_b}{B^2} \mathbf{B}_0 \cdot [\nabla \psi \times \mathbf{J}_0]$  
    $\displaystyle = -{\textmu}_0^{- 1} \nabla Q_b \cdot \nabla \psi -{\textmu}_0^{-...
...{B}_0 \cdot [\nabla \psi \times {\textmu}_0^{- 1} (\nabla \times
\mathbf{B}_0)]$  
    $\displaystyle ={\textmu}_0^{- 1} \left\{ - \nabla Q_b \cdot \nabla \psi - Q_b B...
...0 \cdot \nabla) \nabla \psi - (\nabla \psi \cdot
\nabla) \mathbf{B}_0] \right\}$ (342)

The second term of Eq. (342) is written
$\displaystyle - Q_b B^2_0 (\nabla \psi \cdot \nabla) \frac{1}{B^2_0}$ $\displaystyle =$ $\displaystyle - \left( 0 -
Q_b \frac{1}{B^2_0} (\nabla \psi \cdot \nabla) B^2_0 \right)$  
  $\displaystyle =$ $\displaystyle Q_b \frac{1}{B^2_0} (\nabla \psi \cdot \nabla) B^2_0$ (343)

The last term of Eq. (342) is written
$\displaystyle - 2 \frac{Q_b}{B^2_0} \mathbf{B}_0 \cdot (\nabla \psi \cdot \nabla)
\mathbf{B}_0$ $\displaystyle =$ $\displaystyle - \frac{Q_b}{B^2_0} (\nabla \psi \cdot \nabla)
(\mathbf{B}_0 \cdot \mathbf{B}_0)$  
  $\displaystyle =$ $\displaystyle - \frac{Q_b}{B^2_0} (\nabla \psi \cdot \nabla) B^2_0$ (344)

The terms in Eqs. (343) and (344) exactly cancel each other. Thus the expression in (342) now reduces to

$\displaystyle {\textmu}_0^{- 1} \left\{ - \nabla Q_b \cdot \nabla \psi + 2 \fra...
...{B^2_0} \mathbf{B}_0 \cdot [- (\mathbf{B}_0 \cdot \nabla) \nabla \psi] \right\}$ (345)

Noting that
$\displaystyle \mathbf{B}_0 \cdot [- (\mathbf{B}_0 \cdot \nabla) \nabla \psi]$ $\displaystyle =$ $\displaystyle -
(\mathbf{B}_0 \cdot \nabla) [\mathbf{B}_0 \cdot \nabla \psi] +
[(\mathbf{B}_0 \cdot \nabla) \mathbf{B}_0] \cdot \nabla \psi$  
  $\displaystyle =$ $\displaystyle [(\mathbf{B}_0 \cdot \nabla) \mathbf{B}_0] \cdot \nabla \psi,$ (346)

the expression (345) is further written as
    $\displaystyle {\textmu}_0^{- 1} \left\{ - \nabla Q_b \cdot \nabla \psi + 2
\frac{Q_b}{B^2} [\mathbf{B}_0 \cdot \nabla \mathbf{B}_0] \cdot \nabla \psi
\right\}$  
    $\displaystyle ={\textmu}_0^{- 1} \left\{ - \nabla Q_b \cdot \nabla \psi + 2 Q_b...
... \left(
\frac{\mathbf{B}_0}{B_0} B_0 \right) \right] \cdot \nabla \psi \right\}$  
    $\displaystyle ={\textmu}_0^{- 1} \left\{ - \nabla Q_b \cdot \nabla \psi + 2 Q_b...
...ac{1}{B_0} [\mathbf{b} \cdot \nabla (\mathbf{b}B_0)] \cdot \nabla \psi
\right\}$  
    $\displaystyle ={\textmu}_0^{- 1} \{ - \nabla Q_b \cdot \nabla \psi + 2 Q_b
[\mathbf{b} \cdot \nabla (\mathbf{b})] \cdot \nabla \psi + 0 \}$  
    $\displaystyle ={\textmu}_0^{- 1} \{ - \nabla Q_b \cdot \nabla \psi + 2 Q_b
\ensuremath{\boldsymbol{\kappa}} \cdot \nabla \psi \},$  

where $ \mathbf{b}=\mathbf{B}_0 / B$ is the unit vector along the direction of equilibrium magnetic field, and $ \ensuremath{\boldsymbol{\kappa}}=\mathbf{b} \cdot \nabla \mathbf{b}$ is the magnetic field curvature. Using these results, we obtain
    $\displaystyle \nabla \psi \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_1)
...
...a \psi \cdot {\textmu}_0^{- 1} (\nabla \times
\mathbf{B}_0) \times \mathbf{B}_1$  
    $\displaystyle ={\textmu}_0^{- 1} \vert \nabla \psi \vert^2 \mathbf{B}_0 \cdot \...
...\cdot \nabla \psi + 2 Q_b \ensuremath{\boldsymbol{\kappa}} \cdot \nabla \psi) .$ (347)

Using the above results, the radial component equation

$\displaystyle - \omega^2 \rho_{m 0} \xi_{\psi} = - \nabla \psi \cdot \nabla p_1...
... \psi \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_0) \times \mathbf{B}_1,$ (348)

is written as

$\displaystyle - \omega^2 \rho_{m 0} \xi_{\psi} = - \nabla \psi \cdot \nabla p_1...
...b \cdot \nabla \psi + 2 Q_b \ensuremath{\boldsymbol{\kappa}} \cdot \nabla \psi)$ (349)

which can be arranged in the form
$\displaystyle - \omega^2 \rho_{m 0} \xi_{\psi}$ $\displaystyle =$ $\displaystyle - \nabla \psi \cdot \nabla (p_1
+{\textmu}_0^{- 1} \mathbf{B}_1 \...
...hbf{B}_0 \cdot \nabla \left( \frac{Q_{\psi}}{\vert \nabla
\psi \vert^2} \right)$  
    $\displaystyle + ({\textmu}_0^{- 1} \vert \nabla \psi \vert^2 S -\mathbf{B}_0 \c...
...s + 2{\textmu}_0^{- 1} \ensuremath{\boldsymbol{\kappa}} \cdot \nabla \psi
Q_b .$ (350)

Define $ P_1 = p_1 +{\textmu}_0^{- 1} \mathbf{B}_1 \cdot \mathbf{B}_0$, the above equation is written as
$\displaystyle - \omega^2 \rho_{m 0} \xi_{\psi}$ $\displaystyle =$ $\displaystyle - \nabla \psi \cdot \nabla P_1
+{\textmu}_0^{- 1} \vert \nabla \p...
...hbf{B}_0 \cdot \nabla \left(
\frac{Q_{\psi}}{\vert \nabla \psi \vert^2} \right)$  
    $\displaystyle + ({\textmu}_0^{- 1} \vert \nabla \psi \vert^2 S -\mathbf{B}_0 \c...
..._s + 2{\textmu}_0^{- 1} \ensuremath{\boldsymbol{\kappa}} \cdot \nabla \psi
Q_b,$ (351)

which is identical with Eq. (107).

yj 2015-09-04