proof

Try to prove that

$\displaystyle \nabla \cdot \frac{(\mathbf{B}_0 \times \nabla \psi)}{B^2_0}$ $\displaystyle =$ $\displaystyle -
2\ensuremath{\boldsymbol{\kappa}} \cdot \left( \frac{\mathbf{B}_0 \times \nabla
\psi}{B_0^2} \right) .$ (357)

Proof:
$\displaystyle \nabla \cdot \frac{(\mathbf{B}_0 \times \nabla \psi)}{B^2_0}$ $\displaystyle =$ $\displaystyle \frac{1}{B_0^2} \nabla \cdot (\mathbf{B}_0 \times \nabla \psi) +
(\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2}$  
  $\displaystyle =$ $\displaystyle \frac{1}{B_0^2} \nabla \psi \cdot \nabla \times \mathbf{B}_0 +
(\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2}$  
  $\displaystyle =$ $\displaystyle \frac{1}{B_0^2} \nabla \psi \cdot {\textmu}_0 \mathbf{J}_0 +
(\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2}$  
  $\displaystyle =$ $\displaystyle 0 + (\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2} .$ (358)

Using

$\displaystyle (\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2} = ...
...B_0^2} (\mathbf{B}_0 \times \nabla \psi) \cdot \ensuremath{\boldsymbol{\kappa}}$ (359)

(proof of this is given in Sec. 9.9), Eq. (358) is written as

$\displaystyle \nabla \cdot \frac{(\mathbf{B}_0 \times \nabla \psi)}{B^2_0} = - ...
...B_0^2} (\mathbf{B}_0 \times \nabla \psi) \cdot \ensuremath{\boldsymbol{\kappa}}$ (360)



yj 2015-09-04