proof of $ (B \times \nabla \psi ) \cdot \nabla \left ( \frac {1}{B^2} \right ) = - 2 \kappa \cdot (B \times \nabla \psi ) / B^2$

The left-hand side of the equation is written as

$\displaystyle (\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2}$ $\displaystyle =$ $\displaystyle -
\frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot \nabla B_0$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot \nabla
(\mathbf{B}_0 \cdot \mathbf{b})$ (361)

Using $ \ensuremath{\boldsymbol{\kappa}}=\mathbf{b} \cdot \nabla \mathbf{b}= -\mathbf{b}
\times \nabla \times \mathbf{b}$, the above equation is reduced to
$\displaystyle (\mathbf{B}_0 \times \nabla \psi) \cdot \nabla \frac{1}{B_0^2}$ $\displaystyle =$ $\displaystyle -
\frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot [\mathb...
..._0
+\mathbf{b} \cdot \nabla \mathbf{B}_0 +\mathbf{B}_0 \cdot \nabla
\mathbf{b}]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot [\mathbf{b}
\times \nabla \times \mathbf{B}_0 +\mathbf{b} \cdot \nabla \mathbf{B}_0]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot [\mathbf{b}
\times {\textmu}_0 \mathbf{J}_0 +\mathbf{b} \cdot \nabla \mathbf{B}_0]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot [\mathbf{b}
\cdot \nabla \mathbf{B}_0]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot [\mathbf{b}
\cdot \nabla B_0 \mathbf{b}]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot
[(\mathbf{b} \cdot \nabla B_0) \mathbf{b}+ B_0 \mathbf{b} \cdot \nabla
\mathbf{b}]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^3} (\mathbf{B}_0 \times \nabla \psi) \cdot [B_0
\mathbf{b} \cdot \nabla \mathbf{b}]$  
  $\displaystyle =$ $\displaystyle - \frac{2}{B_0^2} (\mathbf{B}_0 \times \nabla \psi) \cdot
\ensuremath{\boldsymbol{\kappa}}$  

Another way to prove that $ (\mathbf{B} \times \nabla \psi) \cdot B^2 \nabla
\frac{1}{B^2}$ is equal to $ - 2\ensuremath{\boldsymbol{\kappa}} \cdot (\mathbf{B} \times
\nabla \psi)$: The difference of these two terms is
    $\displaystyle - (\mathbf{B} \times \nabla \psi) \cdot B^2 \nabla \frac{1}{B^2} -
2\mathbf{K} \cdot (\mathbf{B} \times \nabla \psi)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( B^2 \nabla
\frac{1}{B^2} + 2\mathbf{K} \right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( B^2 \nabla
\frac{1}{B^2} + 2 \frac{\mathbf{B}}{B} \cdot \nabla \frac{\mathbf{B}}{B}
\right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( B^2 \nabla
\frac...
...eft( 2 \frac{\mathbf{B}}{B} \cdot \nabla \right)
\mathbf{B} \frac{1}{B} \right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( B^2 \nabla
\frac...
...eft( 2 \frac{\mathbf{B}}{B} \cdot \nabla \right)
\mathbf{B} \frac{1}{B} \right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( B^2 \nabla B^2 \...
...eft( 2 \frac{\mathbf{B}}{B} \cdot \nabla \right)
\mathbf{B} \frac{1}{B} \right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( - \frac{1}{B^2}
...
...eft( 2 \frac{\mathbf{B}}{B} \cdot \nabla \right) \mathbf{B}
\frac{1}{B} \right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left( - \frac{1}{B^2}
...
...eft( 2 \frac{\mathbf{B}}{B} \cdot
\nabla \right) \mathbf{B} \frac{1}{B} \right)$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left[ - \frac{1}{B^2}
...
...f{B}) + \left( 2 \frac{\mathbf{B}}{B^2} \cdot \nabla \right)
\mathbf{B} \right]$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left[ - \frac{1}{B^2}
2\mathbf{B} \times \nabla \times \mathbf{B} \right]$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left[ - \frac{1}{B^2}
2\mathbf{B} \times \mathbf{J} \right]$  
    $\displaystyle = - (\mathbf{B} \times \nabla \psi) \cdot \left[ - \frac{1}{B^2} 2
\nabla P \right]$  
    $\displaystyle = (\mathbf{B} \times \nabla \psi) \cdot \left[ - \frac{1}{B^2} 2 P'
\nabla \psi \right]$  
    $\displaystyle = 0$  

Thus we prove that

$\displaystyle - Q_b (\mathbf{B} \times \nabla \psi) \cdot B^2 \nabla \frac{1}{B^2} = 2\ensuremath{\boldsymbol{\kappa}} \cdot (\mathbf{B} \times \nabla \psi) Q_b$ (362)

yj 2015-09-04