proof

Try to prove that

$\displaystyle \mathbf{B}_0 \cdot \left( \mathbf{B}_0 \cdot \nabla \frac{\nabla ...
... \Psi \frac{B^2}{\vert \nabla \Psi \vert^2} +{\textmu}_0 \frac{d p_0}{d \Psi} .$ (363)

Proof: We have

$\displaystyle \nabla p_0 = \frac{d p_0}{d \Psi} \nabla \Psi$ (364)

Thus
$\displaystyle {\textmu}_0 \frac{d p_0}{d \Psi}$ $\displaystyle =$ $\displaystyle {\textmu}_0 \frac{\nabla \Psi \cdot
\nabla p_0}{\vert \nabla \Psi \vert^2}$  
  $\displaystyle =$ $\displaystyle {\textmu}_0 \frac{\nabla \Psi \cdot (\mathbf{J}_0 \times
\mathbf{B}_0)}{\vert \nabla \Psi \vert^2}$  
  $\displaystyle =$ $\displaystyle \frac{\nabla \Psi \cdot ((\nabla \times \mathbf{B}_0) \times
\mathbf{B}_0))}{\vert \nabla \Psi \vert^2}$  
  $\displaystyle =$ $\displaystyle - (\nabla \times \mathbf{B}_0) \cdot \left( \frac{\nabla \Psi}{\vert
\nabla \Psi \vert^2} \times \mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle \nabla \cdot \left[ \left( \frac{\nabla \Psi}{\vert \nabla \Psi \...
...left( \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \times
\mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \nabla \cdot \left( B_0^2 \frac{\nabla \Psi}{\vert \nabla \Psi ...
...left( \frac{\nabla \Psi}{\vert \nabla
\Psi \vert^2} \times \mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \nabla \cdot \left( B_0^2 \frac{\nabla \Psi}{\vert \nabla \Psi ...
...\frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla
\mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \nabla \cdot \left( B_0^2 \frac{\nabla \Psi}{\vert \nabla \Psi ...
...\frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla
\mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla B_0^...
...\frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla
\mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla \mat...
...\frac{\nabla \Psi}{\vert \nabla \Psi
\vert^2} \cdot \nabla \mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot (2\mathbf{B...
...\frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla
\mathbf{B}_0 \right)$  
  $\displaystyle =$ $\displaystyle - \frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot (2\mathbf{B...
...si}{\vert \nabla
\Psi \vert^2} \cdot (\mathbf{B}_0 \cdot \nabla B_0 \mathbf{b})$ (365)

The last term on the right-hand side of Eq. (365) is written as
$\displaystyle - \frac{2 \nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot (\mathbf{B}_0 \cdot \nabla
B_0 \mathbf{b})$ $\displaystyle =$ $\displaystyle - \frac{2 \nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot (B_0
\mathbf{B}_0 \cdot \nabla \mathbf{b}+ (\mathbf{B}_0 \cdot \nabla
B)\mathbf{b})$  
  $\displaystyle =$ $\displaystyle - \frac{2 \nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot (B_0 \mathbf{B}_0
\cdot \nabla \mathbf{b})$  
  $\displaystyle =$ $\displaystyle - \frac{2 B^2 \nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot
\ensuremath{\boldsymbol{\kappa}}.$  

Using this, Eq. (365) is written as
$\displaystyle {\textmu}_0 \frac{d p_0}{d \Psi}$ $\displaystyle =$ $\displaystyle \frac{2 \nabla \Psi}{\vert \nabla \Psi
\vert^2} \cdot ((\nabla \t...
... \nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \ensuremath{\boldsymbol{\kappa}}$  
  $\displaystyle =$ $\displaystyle 2{\textmu}_0 \frac{d p_0}{d \Psi} -\mathbf{B}_0 \cdot \left(
\mat...
...\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \ensuremath{\boldsymbol{\kappa}},$ (366)

i.e.,
$\displaystyle \mathbf{B}_0 \cdot \left( \mathbf{B}_0 \cdot \nabla \frac{\nabla ...
...\frac{\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \nabla
\mathbf{B}_0 \right)$ $\displaystyle =$ $\displaystyle {\textmu}_0 \frac{d p_0}{d \Psi} - \frac{2 B^2
\nabla \Psi}{\vert \nabla \Psi \vert^2} \cdot \ensuremath{\boldsymbol{\kappa}},$ (367)

thus Eq. (363) is proved.

yj 2015-09-04