Double transport barriers pressure profile

An analytic expression for the pressure profile of double (inner and external) transport barriers is given by

$\displaystyle P (\psi) = a_i \left( 1 + \tanh \left( \frac{- (\psi - \psi_i)}{w...
...+ a_e \left( 1 + \tanh \left( \frac{- (\psi - \psi_e)}{w_e} \right) \right) - c$ (523)

where $ \psi $ is the normalized poloidal flux, $ w_i$ and $ w_e$ are the width of the inner and external barriers, $ \psi_i$ and $ \psi_e$ are the locations of the barriers, $ a_i$ and $ a_e$ is the height of the barriers, $ c$ is a constant to ensure $ P (\psi) = 0$ at $ \psi = 1$.

Figure 34: Pressure profile of double (inner and external) transport barriers given by Eq. (523) with $ a_i = 1$, $ b_i = 0.2$, $ \psi _i = 0.36$, $ \psi _e = 0.96$, $ w_i = 0.2$, $ w_e = 0.04$, $ c = 0$.
\includegraphics{/home/yj/theory/figures/transp_barrier.eps}

Figure 35: Equilibrium pressure profile for EAST discharge #38300 at 3.9s (reconstructed by EFIT code, gfile name: g038300.03900), which shows a boundary transport barrier.
\includegraphics{/home/yj/project_new/read_gfile/fig37/pressure.eps}



yj 2018-03-09