Ballooning transformation

To construct a periodic function about $ \theta $, we introduces a function $ \overline{z} (\theta)$ which is defined over $ - \infty < \theta < \infty$ and vanishes sufficiently fast as $ \vert \theta \vert \rightarrow \infty$ so that the following infinite summation converge:

$\displaystyle \sum_{l = - \infty}^{\infty} \overline{z} (\theta + 2 \pi l) .$ (524)

If we use the above sum to define a function

$\displaystyle z (\theta) = \sum_{l = - \infty}^{\infty} \overline{z} (\theta + 2 \pi l),$ (525)

then it is obvious that

$\displaystyle z (\theta + 2 \pi) = z (\theta),$ (526)

i.e., $ z (\theta)$ is a periodic function about $ \theta $ with period of $ 2 \pi $.

If we use the right-hand-side of Eq. (525) to represent $ z (\theta)$, then we do not need to worry about the periodic property of $ z (\theta)$ (the periodic property is guaranteed by the representation)



yj 2018-03-09