Plasma current density

Using the equilibrium constraint in the $ \mathbf{R}$ direction, $ J_{\phi}$ given by Eq. (41) is written

$\displaystyle J_{\phi}$ $\displaystyle =$ $\displaystyle - \frac{1}{\mu_0 R} \triangle^{\ast} \Psi$ (61)
  $\displaystyle =$ $\displaystyle R \frac{d P}{d \Psi} + \frac{1}{\mu_0 R} \frac{d g}{d \Psi} g.$ (62)

The poloidal current density $ \mathbf{J}_p$ is written
$\displaystyle \mathbf{J}_p$ $\displaystyle \equiv$ $\displaystyle J_R \hat{\mathbf{R}} + J_Z \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mu_0} \left( - \frac{1}{R} \frac{\partial g}{\partial Z...
...thbf{R}} + \frac{1}{R} \frac{\partial g}{\partial R}
\hat{\mathbf{Z}} \right) .$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mu_0} \nabla g \times \nabla \phi$ (63)

Using $ g = g (\Psi)$, Eq. (63) is written
$\displaystyle \mathbf{J}_p$ $\displaystyle =$ $\displaystyle \frac{1}{\mu_0} \frac{d g}{d \Psi} \nabla \Psi \times
\nabla \phi$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mu_0} \frac{d g}{d \Psi} \mathbf{B}_p .$  

The parallel (to the magnetic field) current density is written as
$\displaystyle J_{\parallel}$ $\displaystyle \equiv$ $\displaystyle \frac{\mathbf{J} \cdot \mathbf{B}}{B}$  
  $\displaystyle =$ $\displaystyle \frac{J_{\phi} B_{\phi} +\mathbf{J}_p \cdot \mathbf{B}_p}{B}$  
  $\displaystyle =$ $\displaystyle \frac{\left( R \frac{d P}{d \Psi} + \frac{1}{\mu_0 R} \frac{d g}{...
...+ \frac{1}{\mu_0} \frac{d g}{d \Psi} \left(
\frac{\nabla \Psi}{R} \right)^2}{B}$  
  $\displaystyle =$ $\displaystyle \frac{g \frac{d P}{d \Psi} + \frac{1}{\mu_0} \frac{d g}{d \Psi}
\...
...eft( \frac{g}{R} \right)^2 + \left( \frac{\nabla \Psi}{R}
\right)^2 \right]}{B}$  
  $\displaystyle =$ $\displaystyle \frac{g \frac{d P}{d \Psi} + \frac{1}{\mu_0} \frac{d g}{d \Psi}
B^2}{B} .$ (64)

For later use, define
$\displaystyle \sigma$ $\displaystyle \equiv$ $\displaystyle \frac{J_{\parallel}}{B}$  
  $\displaystyle =$ $\displaystyle g \frac{d P}{d \Psi} \frac{1}{B^2} + \frac{1}{\mu_0} \frac{d g}{d
\Psi} .$ (65)

Equation (65) is used in GTAW code to calculate $ J_{\parallel} / B$ (actually calculated is $ \mu_0 J_{\parallel} / B$)[8]. Note that the expression for $ J_{\parallel} / B$ in Eq. (65) is not a magnetic surface function. Define $ \sigma_{\ensuremath{\operatorname{ps}}}$ as
$\displaystyle \sigma_{\ensuremath{\operatorname{ps}}}$ $\displaystyle \equiv$ $\displaystyle \sigma - \langle \sigma \rangle$  
  $\displaystyle =$ $\displaystyle g \frac{d P}{d \Psi} \left[ \frac{1}{B^2} - \left\langle
\frac{1}{B^2} \right\rangle \right]$ (66)
  $\displaystyle \equiv$ $\displaystyle \frac{J_{\parallel}^{\ensuremath{\operatorname{ps}}}}{B},$ (67)

where $ J_{\parallel}^{\ensuremath{\operatorname{ps}}}$ is called Pfirsch-Schluter (PS) current. In cylindrical geometry, due to the poloidal symmetry, the Pfiersch-Schluter current is obviously zero. In toroidal geometry, due to the poloidal asymmetry, the PS current is generally nonzero. Thus, this quantity characterizes a toroidal effect.

Another useful quantity is $ \mu_0 \langle \mathbf{J} \cdot \mathbf{B}
\rangle$, which is written as

$\displaystyle \mu_0 \langle \mathbf{J} \cdot \mathbf{B} \rangle$ $\displaystyle =$ $\displaystyle \mu_0 g \frac{d P}{d
\Psi} + \frac{d g}{d \Psi} \langle B^2 \rangle,$ (68)

where $ \langle \ldots \rangle$ is flux surface averaging operator, which will be defined later in this note.

yj 2018-03-09