Curl operator in general coordinates $ (\psi , \theta , \zeta )$

To take the curl of a vector, it should be in the covariant representation since we can make use of the fact that $ \nabla \times \nabla \alpha = 0$. Thus the curl of $ \mathbf{A}$ is written as

$\displaystyle \nabla \times \mathbf{A}$ $\displaystyle =$ $\displaystyle \nabla \times (A_1 \nabla \psi + A_2 \nabla
\theta + A_3 \nabla \zeta)$  
  $\displaystyle =$ $\displaystyle \nabla A_1 \times \nabla \psi + \nabla A_2 \times \nabla \theta +
\nabla A_3 \times \nabla \zeta$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial A_1}{\partial \theta} \nabla \theta +
\frac...
... \frac{\partial
A_3}{\partial \theta} \nabla \theta \right) \times \nabla \zeta$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mathcal{J}} \left( \frac{\partial A_2}{\partial \psi} -...
...al A_2}{\partial \zeta} \right)
\mathcal{J} \nabla \theta \times \nabla \zeta .$ (139)

Note that taking the curl of a vector in the covariant form leaves the vector in the contravariant form.



yj 2018-03-09