Special case: metric tensor for $ (\psi , \theta , \phi )$ coordinate system

Suppose that $ (\psi , \theta , \phi )$ are arbitrary general coordinates except that $ \phi $ is the usual toroidal angle in cylindrical coordinates. Then $ \nabla \phi = 1 / R \hat{\ensuremath{\boldsymbol{\phi}}}$ is perpendicular to both $ \nabla \psi$ and $ \nabla \theta $. Using this, Eq. (152) is simplified to

$\displaystyle \left(\begin{array}{c} \nabla \psi\\ \nabla \theta\\ \nabla \phi ...
...i \mathcal{J}\\ \nabla \psi \times \nabla \theta \mathcal{J} \end{array}\right)$ (166)

Similarly, Eq. (165) is simplified to

$\displaystyle \left(\begin{array}{c} \nabla \theta \times \nabla \phi \mathcal{...
...t(\begin{array}{c} \nabla \psi\\ \nabla \theta\\ \nabla \phi \end{array}\right)$ (167)

[Note that the matrix in Eqs. (166) and (167) should be the inverse of each other. The product of the two matrix,

$\displaystyle \left(\begin{array}{ccc} \vert \nabla \theta \vert^2 \mathcal{J}^...
... \theta & \vert \nabla \theta \vert^2 & 0\\ 0 & 0 & 1 / R^2 \end{array}\right),$ (168)

can be calculated to give

$\displaystyle \left(\begin{array}{ccc}
A & 0 & 0\\
0 & A & 0\\
0 & 0 & 1
\end{array}\right), $

where

$\displaystyle A = \vert \nabla \theta \vert^2 \vert \nabla \psi \vert^2 \mathcal{J}^2 / R^2 - (\nabla
\theta \cdot \nabla \psi)^2 \mathcal{J}^2 . $

By using the definition of the Jacobian in Eq. (105), it is easy to verify that $ A = 1$, i.e.,

$\displaystyle \vert \nabla \theta \vert^2 \vert \nabla \psi \vert^2 - (\nabla \theta \cdot \nabla \psi)^2 = \frac{R^2}{\mathcal{J}^2},$ (169)

]

yj 2018-03-09