Jacobian for equal-volume poloidal angle

The volume element in $ (\psi , \theta , \phi )$ coordinates is given by $ d V =
\vert\mathcal{J}\vert d \theta d \phi d \psi$. If we choose a Jacobian that is independent of $ \theta $, then uniform $ \theta $ grids will correspond to grids with uniform volume interval. In this case, $ \mathcal{J}$ is written as

$\displaystyle \mathcal{J}= h (\psi),$ (197)

where $ h (\psi)$ is a function independent of $ \theta $. Then $ \overline{\theta}_{i, j}$ in Eq. (191) is written

$\displaystyle \overline{\theta}_{i, j} = \frac{2 \pi}{\oint \frac{R}{\vert \nab...
...vert} d l_p} \int_0^{\mathbf{x}_{i, j}} \frac{R}{\vert \nabla \psi \vert} d l_p$ (198)

and $ \mathcal{J}_{\ensuremath{\operatorname{new}}}$ given by Eq. (193) now takes the following form

$\displaystyle \mathcal{J}_{\ensuremath{\operatorname{new}}} = \pm \frac{1}{2 \pi} \oint \frac{R}{\vert \nabla \psi \vert} d l_p .$ (199)

Note that both $ \overline{\theta}_{i, j}$ and $ \mathcal{J}_{\ensuremath{\operatorname{new}}}$ are independent of the function $ h (\psi)$ introduced in Eq. (197). ($ h (\psi)$ is eliminated by the normalization procedure specified in Sec. 5.3.1 due to the fact that $ h (\psi)$ is constant on a magnetic surface.)

yj 2018-03-09