Jacobian for straight-field-line poloidal angle

If the Jacobian $ \mathcal{J}$ is chosen to be of the following form

$\displaystyle \mathcal{J} (\psi, \theta) = R^2, $

then Eq. (179) implies that $ q_{\ensuremath{\operatorname{local}}}$ is a magnetic surface function, i.e., the magnetic field lines are straight on $ (\psi, \theta)$ plane. The poloidal angle in Eq. (191) is written

$\displaystyle \overline{\theta}_{i, j} = \frac{2 \pi}{\oint \frac{1}{R \vert \n...
... d
l_p} \int_0^{\mathbf{x}_{i, j}} \frac{1}{R \vert \nabla \psi \vert} d l_p, $

The Jacobian $ \mathcal{J}_{\ensuremath{\operatorname{new}}}$ given by Eq. (193) now takes the form

$\displaystyle \mathcal{J}_{\ensuremath{\operatorname{new}}} = \pm R^2 \frac{\oint \frac{1}{R \vert \nabla \psi \vert} d l_p}{2 \pi} .$ (200)



yj 2018-03-09