Contravariant form of magnetic field in $ (\psi , \theta , \zeta )$ coordinates

Recall that the contravariant form of the magnetic field in $ (\psi , \theta , \phi )$ coordinates is given by Eq. (180), i.e.,

$\displaystyle \mathbf{B}= - \Psi' (\nabla \phi \times \nabla \psi + \hat{q} \nabla \psi \times \nabla \theta) .$ (248)

Next, let us derive the corresponding form in $ (\psi , \theta , \zeta )$ coordinates. Using the definition of $ \zeta $, equation (248) is written as
$\displaystyle \mathbf{B}$ $\displaystyle =$ $\displaystyle - \Psi' \nabla (\zeta + q \delta) \times \nabla \psi -
\Psi' \hat{q} \nabla \psi \times \nabla \theta$  
  $\displaystyle =$ $\displaystyle - \Psi' \nabla \zeta \times \nabla \psi - \Psi' \nabla (q \delta)
\times \nabla \psi - \Psi' \hat{q} \nabla \psi \times \nabla \theta$  
  $\displaystyle =$ $\displaystyle - \Psi' \nabla \zeta \times \nabla \psi - \Psi' q \frac{\partial
...
...abla \theta \times \nabla \psi - \Psi' \hat{q}
\nabla \psi \times \nabla \theta$ (249)

Using Eq. (240), the above equation is simplified as
$\displaystyle \mathbf{B}$ $\displaystyle =$ $\displaystyle - \Psi' (\nabla \zeta \times \nabla \psi + q \nabla \psi
\times \nabla \theta) .$ (250)

Equation (250) is the contravariant form of the magnetic field in $ (\psi , \theta , \zeta )$ coordinates.

yj 2018-03-09