Form of operator $ (B \times \nabla \psi / B^2) \cdot \nabla $ in $ (\psi , \theta , \zeta )$ coordinates

In solving the MHD eigenmode equations in toroidal geometries, besides the $ \mathbf{B} \cdot \nabla$ operator, we will also encounter another surface operator $ (\mathbf{B} \times \nabla \psi / B^2) \cdot \nabla$. Next, we derive the form of the this operator in $ (\psi , \theta , \zeta )$ coordinate system. Using the covariant form of the equilibrium magnetic field [Eq. (268)], we obtain

$\displaystyle \frac{\mathbf{B} \times \nabla \psi}{B^2} = \frac{1}{B^2} \left( ...
...bla \theta \times \nabla \psi + \frac{g}{B^2} \nabla \zeta \times \nabla \psi .$ (270)

Using this, the $ (\mathbf{B} \times \nabla \psi / B^2) \cdot \nabla$ operator is written as
$\displaystyle \frac{\mathbf{B} \times \nabla \psi}{B^2} \cdot \nabla$ $\displaystyle =$ $\displaystyle \frac{1}{B^2}
\left( \frac{B^2}{\Psi'} \mathcal{J}+ g q \right) \...
...rtial \zeta} + \frac{g}{B^2} \mathcal{J}^{- 1}
\frac{\partial}{\partial \theta}$ (271)
  $\displaystyle =$ $\displaystyle \left( \frac{1}{\Psi'} + g \frac{\mathcal{J}^{- 1}}{B^2} q \right...
...tial \zeta} + g \frac{\mathcal{J}^{- 1}}{B^2}
\frac{\partial}{\partial \theta},$ (272)

which is the form of the operator in $ (\psi , \theta , \zeta )$ coordinate system.

Examining Eq. (272), we find that if the Jacobian $ \mathcal{J}$ is chosen to be of the form $ \mathcal{J}= \alpha (\psi) / B^2$, where $ \alpha $ is some magnetic surface function, then the coefficients before the two partial derivatives will be independent of $ \theta $ and $ \zeta $. It is obvious that the independence of the coefficients on $ \theta $ and $ \zeta $ will be advantageous to some applications. The coordinate system $ (\psi , \theta , \zeta )$ with the particular choice of $ \mathcal{J}= \alpha (\psi) / B^2$ is called the Boozer coordinates, named after A.H. Boozer, who first proposed this choice of the Jacobian. The usefulness of the new toroidal angle $ \zeta $ is highlighted in Boozer's choice of the Jacobian, which makes both $ \mathbf{B} \cdot \nabla$ and $ (\mathbf{B} \times \nabla \psi / B^2) \cdot \nabla$ be a constant-coefficient differential operator. For other choices of the Jacobian, only the $ \mathbf{B} \cdot \nabla$ operator is a constant-coefficient differential operator.

yj 2018-03-09