Radial differential operator

In solving the MHD eigenmode equations in toroidal geometry, we also need the radial differential operator $ \nabla \psi \cdot \nabla$. Next, we derive the form of the operator in $ (\psi , \theta , \zeta )$ coordinates. Using

$\displaystyle \nabla f = \frac{\partial f}{\partial \psi} \nabla \psi + \frac{\...
...rtial \theta} \nabla \theta + \frac{\partial f}{\partial \zeta}
\nabla \zeta, $

the radial differential operator is written as
$\displaystyle \nabla \psi \cdot \nabla f$ $\displaystyle =$ $\displaystyle \vert \nabla \psi \vert^2 \frac{\partial
f}{\partial \psi} + (\na...
...al \theta} + (\nabla \zeta \cdot \nabla \psi) \frac{\partial
f}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \vert \nabla \psi \vert^2 \frac{\partial f}{\partial \psi} + (\na...
...q
\delta (\psi, \theta)] \cdot \nabla \psi \} \frac{\partial f}{\partial
\zeta}$  
  $\displaystyle =$ $\displaystyle \vert \nabla \psi \vert^2 \frac{\partial f}{\partial \psi} + (\na...
...\theta} - \nabla [q \delta]
\cdot \nabla \psi \frac{\partial f}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \vert \nabla \psi \vert^2 \frac{\partial f}{\partial \psi} + (\na...
...a \delta +
\delta \nabla q] \cdot \nabla \psi \frac{\partial f}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \vert \nabla \psi \vert^2 \frac{\partial f}{\partial \psi} + (\na...
...elta q' \nabla \psi
\right] \cdot \nabla \psi \frac{\partial f}{\partial \zeta}$  
  $\displaystyle =$ $\displaystyle \vert \nabla \psi \vert^2 \frac{\partial f}{\partial \psi} + (\na...
...eta} \nabla \theta \cdot \nabla \psi
\right] \frac{\partial f}{\partial \zeta},$ (273)

where $ \partial (q \delta) / \partial \psi$ and $ q \partial \delta / \partial
\theta$ are given respectively by Eqs. (246) and (240). Using the above formula, $ \nabla \psi \cdot \nabla \zeta$ is written as

$\displaystyle \nabla \psi \cdot \nabla \zeta = - \left[ \frac{\partial (q \delt...
...rac{\partial \delta}{\partial \theta} \nabla \theta \cdot \nabla \psi \right] .$ (274)

This formula is used in GTAW code.

yj 2018-03-09