Shape parameters of a closed magnetic surface

This section introduces parameters that characteristic the shape of the projection of a magnetic surface on the poloidal plane. The ``midplane'' is defined as the plane that passes through the magnetic axis and is perpendicular to the symmetric axis ($ Z$ axis). For a up-down symmetric (about the midplane) magnetic surface, its shape can be roughly characterized by four parameters, namely, the $ R$ coordinate of the innermost and outermost points on the midplane, $ R_{\ensuremath {\operatorname {in}}}$ and $ R_{\ensuremath {\operatorname {out}}}$; the $ (R, Z)$ coordinators of the highest point of the magnetic surface, $ (R_{\ensuremath {\operatorname {top}}}, Z_{\ensuremath {\operatorname {top}}})$. These four parameters are indicated in Fig. 4.

Figure 4: Four parameters characterizing the shape of a flux surface: the $ R$ coordinate of the innermost and outermost points in the middle-plane, $ R_{\ensuremath {\operatorname {in}}}$ and $ R_{\ensuremath {\operatorname {out}}}$; the $ (R, Z)$ coordinators of the highest point of the flux surface, $ (R_{\ensuremath {\operatorname {top}}}, Z_{\ensuremath {\operatorname {top}}})$.
\includegraphics{/home/yj/project_new/solovev_equilibrium/fig2/plt.eps}

In terms of these four parameters, we can define the major radius of a magnetic surface

$\displaystyle R_0 = \frac{R_{\ensuremath{\operatorname{in}}} + R_{\ensuremath{\operatorname{out}}}}{2},$ (21)

(which is the $ R$ coordinate of the geometric center of the magnetic surface), the minor radius of a magnetic surface

$\displaystyle a = \frac{R_{\ensuremath{\operatorname{out}}} - R_{\ensuremath{\operatorname{in}}}}{2},$ (22)

the triangularity of a magnetic surface

$\displaystyle \delta = \frac{R_0 - R_{\ensuremath{\operatorname{top}}}}{a},$ (23)

and, the ellipticity of a magnetic surface

$\displaystyle \kappa = \frac{Z_{\ensuremath{\operatorname{top}}}}{a} .$ (24)

Strictly speaking, the ellipticity $ \kappa$ defined above is different from the elongation, which is define by $ (\kappa - 1)$ and thus is zero for a circular magnetic surface. However, many authors simply consider the ellipticity to be the elongation. Usually, we specify the value of $ R_0$, $ a$, $ \delta$, and $ \kappa$, instead of $ (R_{\ensuremath{\operatorname{in}}}, R_{\ensuremath{\operatorname{out}}},
R_{\ensuremath{\operatorname{top}}}, Z_{\ensuremath{\operatorname{top}}})$, to characterize the shape of a magnetic surface. Besides, using $ a$ and $ R_0$, we can define another useful parameter $ \varepsilon \equiv a / R_0$, which is called the inverse aspect ratio.

The four shape parameters for the typical Last-Closed-Flux-Surface (LCFS) of EAST tokamak are: major radius $ R_0 = 1.85 m$ (can reach $ 1.9 m$), minor radius $ a = 0.45 m$, ellipticity $ \kappa = 1.8$ (can be in the range from 1.7 to 1.9), triangularity $ \delta = 0.6$ (can be in the range from 0.5 to 0.7). Note that the major radius $ R_0$ of the LCFS is usually different from $ R_{\ensuremath{\operatorname{axis}}}$ (the $ R$ coordinate of the magnetic axis). Usually we have $ R_{\ensuremath{\operatorname{axis}}} > R_0$ due to the Shafranov shift.

yj 2018-03-09