Axisymmetric magnetic field

Due to the divergence-free nature of magnetic field, i.e., $ \nabla \cdot
\mathbf{B}= 0$, magnetic field can be generally expressed as the curl of a vector potential,

$\displaystyle \mathbf{B}= \nabla \times \mathbf{A}.$ (1)

We consider axisymmetric magnetic field. The axial symmetry means that, when expressed in the cylindrical coordinate system $ (R, \phi, Z)$, the components of $ \mathbf {B}$, namely $ B_R$, $ B_Z$, and $ B_{\phi}$, are all independent of $ \phi $. For this case, it can be proved that an axisymmetric vector potential $ \mathbf{A}$ suffices for expressing the magnetic field, i.e., all the components of the vector potential $ \mathbf{A}$ can also be taken independent of $ \phi $. Using this, Eq. (1) is written

$\displaystyle \mathbf{B}= - \frac{\partial A_{\phi}}{\partial Z} \hat{\mathbf{R...
... \frac{\partial A_Z}{\partial R} \right) \hat{\ensuremath{\boldsymbol{\phi}}} .$ (2)

In tokamak literature, $ \hat{\ensuremath{\boldsymbol{\phi}}}$ direction is called the toroidal direction and $ (R, Z)$ plane is called the poloidal plane. Equation (2) indicates that the two poloidal components of $ \mathbf {B}$, namely $ B_R$ and $ B_Z$, are determined by a single component of $ \mathbf{A}$, namely $ A_{\phi}$. This motivates us to define a function $ \Psi (R, Z)$ by

$\displaystyle \Psi (R, Z) \equiv R A_{\phi} (R, Z) .$ (3)

Then Eq. (2) implies the poloidal components, $ B_R$ and $ B_Z$, can be written as

$\displaystyle B_R = - \frac{1}{R} \frac{\partial \Psi}{\partial Z}$ (4)

and

$\displaystyle B_Z = \frac{1}{R} \frac{\partial \Psi}{\partial R} .$ (5)

It is obvious that it is the property of being axisymmetric and divergence-free that enables the two components of $ \mathbf {B}$, $ B_R$ and $ B_Z$, to be expressed in terms of a single function $ \Psi (R, Z)$. (The function $ \Psi $ is usually called the ``poloidal flux function'' in tokamak literature. The reason for this nomenclature will become clear when we discuss the physical meaning of $ \Psi $ in Sec. 1.4.) Furthermore, it is ready to verify $ \Psi $ is constant along a magnetic field line, i.e. $ \mathbf{B}
\cdot \triangledown \Psi = 0$. [Proof:
$\displaystyle \mathbf{B} \cdot \triangledown \Psi$ $\displaystyle =$ $\displaystyle \mathbf{B} \cdot \left(
\frac{\partial \Psi}{\partial R} \hat{\mathbf{R}} + \frac{\partial
\Psi}{\partial Z} \hat{\mathbf{Z}} \right)$  
  $\displaystyle =$ $\displaystyle - \frac{1}{R} \frac{\partial \Psi}{\partial Z} \frac{\partial
\Ps...
...+ \frac{1}{R} \frac{\partial \Psi}{\partial R}
\frac{\partial \Psi}{\partial Z}$  
  $\displaystyle =$ $\displaystyle 0.$ (6)

] For later use, define $ g \equiv R B_{\phi} (R, Z)$, then the toroidal component of the magnetic field is written

$\displaystyle \mathbf{B}_{\phi} = B_{\phi} \hat{\ensuremath{\boldsymbol{\phi}}} = \frac{g}{R} \hat{\ensuremath{\boldsymbol{\phi}}} = g \nabla \phi .$ (7)

Using Eqs. (4), (5), and (7), a general axisymmetric magnetic field can be written as
$\displaystyle \mathbf{B}$ $\displaystyle =$ $\displaystyle B_R \hat{\mathbf{R}} + B_Z \hat{\mathbf{Z}} + B_{\phi}
\hat{\ensuremath{\boldsymbol{\phi}}}$  
  $\displaystyle =$ $\displaystyle - \frac{1}{R} \frac{\partial \Psi}{\partial Z} \hat{\mathbf{R}} +
\frac{1}{R} \frac{\partial \Psi}{\partial R} \hat{\mathbf{Z}} + g \nabla
\phi$  
  $\displaystyle =$ $\displaystyle \frac{1}{R} \nabla \Psi \times \hat{\ensuremath{\boldsymbol{\phi}}} + g \nabla \phi$  
  $\displaystyle =$ $\displaystyle \nabla \Psi \times \nabla \phi + g \nabla \phi .$ (8)



Subsections
yj 2018-03-09