Grad-Shafranov equation in $ (r, \theta )$ coordinates

Consider $ (r, \theta )$ coordinates, which are related to the cylindrical coordinates $ (R, Z)$ by $ Z = r \sin \theta$ and $ R = R_0 + r \cos \theta$, as shown in Fig. 28.

Figure 28: The relation between $ (r, \theta )$ and $ (R, Z)$ coordinates.
\includegraphics{figures/r_theta_coordinates-1.eps}

Next, we transform the GS equation from $ (R, Z)$ coordinates to $ (r, \theta )$ coordinates. Using the relations $ R = R_0 + r \cos \theta$ and $ Z = r \sin \theta$, we have

$\displaystyle r = \sqrt{(R - R_0)^2 + Z^2} \Rightarrow \frac{\partial r}{\partial Z} = \frac{Z}{r} = \sin \theta$ (369)

$\displaystyle \sin \theta = \frac{Z}{\sqrt{(R - R_0)^2 + Z^2}} \Rightarrow \cos \theta \frac{\partial \theta}{\partial Z} = \frac{r - Z \frac{Z}{r}}{r^2} .$ (370)

$\displaystyle \Rightarrow \frac{\partial \theta}{\partial Z} = \frac{r - Z \fra...
... (R - R_0)} = \frac{1 - \sin^2 \theta}{R - R_0} = \frac{\cos^2 \theta}{R - R_0}$ (371)

$\displaystyle \frac{\partial \sin \theta}{\partial Z} = \frac{r - Z \frac{Z}{r}}{r^2} = \frac{1 - \sin^2 \theta}{r} = \frac{\cos^2 \theta}{r}$ (372)

The GS equation in $ (R, Z)$ coordinates is given by

$\displaystyle \frac{\partial^2 \Psi}{\partial Z^2} + R \frac{\partial}{\partial...
...ial R} \right) = - \mu_0 R^2 \frac{d P}{d \Psi} - \frac{d g}{d \Psi} g (\Psi) .$ (373)

The term $ \partial \Psi / \partial Z$ is written as
$\displaystyle \frac{\partial \Psi}{\partial Z}$ $\displaystyle =$ $\displaystyle \frac{\partial \Psi}{\partial r}
\frac{\partial r}{\partial Z} + \frac{\partial \Psi}{\partial \theta}
\frac{\partial \theta}{\partial Z}$  
  $\displaystyle =$ $\displaystyle \frac{\partial \Psi}{\partial r} \sin \theta + \frac{\partial
\Psi}{\partial \theta} \frac{\cos^2 \theta}{R - R_0} .$ (374)

Using Eq. (374), $ \partial^2 \Psi / \partial Z^2$ is written as
$\displaystyle \frac{\partial^2 \Psi}{\partial Z^2}$ $\displaystyle =$ $\displaystyle \frac{\partial}{\partial Z}
\left( \frac{\partial \Psi}{\partial ...
...ft( \frac{\partial \Psi}{\partial \theta}
\frac{\cos^2 \theta}{R - R_0} \right)$  
  $\displaystyle =$ $\displaystyle \sin \theta \frac{\partial}{\partial Z} \left( \frac{\partial
\Ps...
...theta} \frac{\partial}{\partial Z}
\left( \frac{\cos^2 \theta}{R - R_0} \right)$  
  $\displaystyle =$ $\displaystyle \sin \theta \left( \frac{\partial^2 \Psi}{\partial r^2} \sin \the...
...\frac{\partial^2 \Psi}{\partial \theta^2}
\frac{\cos^2 \theta}{R - R_0} \right)$  
  $\displaystyle -$ $\displaystyle \frac{\partial \Psi}{\partial \theta} \frac{1}{R - R_0} 2 \cos
\theta \sin \theta \frac{\cos^2 \theta}{R - R_0}$ (375)

$\displaystyle \frac{\partial r}{\partial R} = \frac{\partial}{\partial R} \sqrt{(R - R_0)^2 + Z^2} = \frac{R - R_0}{r} = \cos \theta$ (376)

$\displaystyle \sin \theta = \frac{Z}{\sqrt{(R - R_0)^2 + Z^2}} . $

$\displaystyle \cos \theta \frac{\partial \theta}{\partial R} = - Z \frac{R - R_0}{r^3} $

$\displaystyle \frac{\partial \theta}{\partial R} = - \frac{Z}{r^2} .$ (377)

$\displaystyle \cos \theta = \frac{R - R_0}{\sqrt{(R - R_0)^2 + Z^2}} $

$\displaystyle \frac{\partial}{\partial R} \cos \theta = \frac{r - \frac{R - R_0}{r} (R - R_0)}{r^2} = \frac{1 - \cos^2 \theta}{r} = \frac{\sin^2 \theta}{r}$ (378)


$\displaystyle R \frac{\partial}{\partial R} \left( \frac{1}{R} \frac{\partial
\Psi}{\partial R} \right)$ $\displaystyle =$ $\displaystyle R \frac{\partial}{\partial R} \left[
\frac{1}{R} \left( \frac{\pa...
...rtial \Psi}{\partial \theta} \frac{\partial
\theta}{\partial R} \right) \right]$  
  $\displaystyle =$ $\displaystyle R \frac{\partial}{\partial R} \left[ \frac{1}{R} \left(
\frac{\pa...
...os \theta - \frac{\partial \Psi}{\partial
\theta} \frac{Z}{r^2} \right) \right]$  
  $\displaystyle =$ $\displaystyle \frac{\partial}{\partial R} \left( \frac{\partial \Psi}{\partial ...
...ial
\Psi}{\partial \theta} \frac{Z}{r^2} \right) \left( - \frac{1}{R^2} \right)$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial^2 \Psi}{\partial r^2} \frac{\partial
r}{\pa...
...al r} \cos \theta -
\frac{\partial \Psi}{\partial \theta} \frac{Z}{r^2} \right)$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial^2 \Psi}{\partial r^2} \cos \theta -
\frac{\...
...al r} \cos \theta -
\frac{\partial \Psi}{\partial \theta} \frac{Z}{r^2} \right)$  
  $\displaystyle =$ $\displaystyle \frac{\partial^2 \Psi}{\partial r^2} \cos^2 \theta + \frac{\parti...
...theta}{r} + \frac{\partial
\Psi}{\partial \theta} Z \frac{1}{r^3} 2 \cos \theta$ (379)
  $\displaystyle -$ $\displaystyle \frac{1}{R} \left( \frac{\partial \Psi}{\partial r} \cos \theta -
\frac{\partial \Psi}{\partial \theta} \frac{1}{r} \sin \theta \right)$ (380)

Sum of the expression on r.h.s of Eq. (375) and the expression on line (379) can be reduced to

$\displaystyle \frac{\partial^2 \Psi}{\partial r^2} + \frac{\partial \Psi}{\partial r} \frac{1}{r} + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \theta^2}$ (381)

Using these, the GS equation is written as

$\displaystyle \frac{\partial^2 \Psi}{\partial r^2} + \frac{\partial \Psi}{\part...
...u_0 (R_0 + r \cos \theta)^2 \frac{d P}{d \Psi} - \frac{d g}{d
\Psi} g (\Psi), $

which can be arranged in the form

$\displaystyle \left( \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{...
...\mu_0 (R_0 + r \cos \theta)^2 \frac{d P}{d \Psi} - \frac{d g}{d \Psi} g (\Psi),$ (382)

which agrees with Eq. (3.6.2) in Wessson's book[12], where $ f$ is defined by $ f = R B_{\phi} / \mu_0$, which is different from $ g \equiv R B_{\phi}$ by a $ 1 / \mu_0$ factor.



Subsections
yj 2018-03-09