Large aspect ratio expansion

Consider the case that the boundary flux surface is circular with radius $ r =
a$ and the center of the cirle at $ (R = R_0, Z = 0)$. Consider the case $ \varepsilon = a / R_0 \rightarrow 0$. Expanding $ \Psi $ in the small parameter $ \varepsilon $,

$\displaystyle \Psi = \Psi_0 + \Psi_1$ (383)

where $ \Psi_0 \sim O (\varepsilon^0)$, $ \Psi_1 \sim O (\varepsilon^1)$. Substituting Eq. (383) into Eq. (382), we obtain

$\displaystyle \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Psi_0}{...
...cos \theta)^2 P'
(\Psi_0 + \Psi_1) - g' (\Psi_0 + \Psi_1) g (\Psi_0 + \Psi_1) $

Multiplying the above equation by $ R_0^2$, we obtain

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \P...
...\theta)^2 P' (\Psi_0 + \Psi_1) - R_0^2 g' (\Psi_0 + \Psi_1) g (\Psi_0 + \Psi_1)$ (384)

Further assume the following ordering

$\displaystyle R_0 \frac{\partial \Psi}{\partial r} \sim O (\varepsilon^{- 1}) \Psi,$ (385)

and

$\displaystyle \frac{\partial \Psi}{\partial \theta} \sim O (\varepsilon^0) \Psi .$ (386)

Using these orderings, the order of the terms in Eq. (384) can be estimated as

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Psi_0}{\partial r} \sim \frac{\Psi_0}{\varepsilon^2} \sim O (\varepsilon^{- 2})$ (387)

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Psi_1}{\partial r} \sim \frac{\Psi_1}{\varepsilon^2} \sim O (\varepsilon^{- 1})$ (388)

$\displaystyle R_0^2 \frac{1}{r^2} \frac{\partial^2 \Psi_0}{\partial \theta^2} \sim \frac{1}{\varepsilon^2} \Psi_0 \sim O (\varepsilon^{- 2})$ (389)

$\displaystyle R_0^2 \frac{1}{r^2} \frac{\partial^2 \Psi_1}{\partial \theta^2} \sim \frac{\Psi_1}{\varepsilon^2} \sim O (\varepsilon^{- 1})$ (390)

$\displaystyle \frac{R_0}{R_0 + r \cos \theta} \approx 1 - \frac{r}{R_0} \cos \theta$ (391)

$\displaystyle R_0 \frac{\partial \Psi_0}{\partial r} \cos \theta \sim \frac{\Psi_0}{\varepsilon} \sim O (\varepsilon^{- 1})$ (392)

$\displaystyle R_0 \frac{\partial \Psi_0}{\partial \theta} \frac{1}{r} \sin \theta \sim \frac{\Psi_0}{\varepsilon} \sim O (\varepsilon^{- 1})$ (393)

$\displaystyle R_0 \frac{\partial \Psi_1}{\partial r} \cos \theta \sim \frac{\Psi_1}{\varepsilon} = O (\varepsilon^0)$ (394)

$\displaystyle R_0 \frac{\partial \Psi_1}{\partial \theta} \frac{1}{r} \sin \theta \sim \frac{\Psi_1}{\varepsilon} = O (\varepsilon^0)$ (395)

The leading order ( $ \varepsilon^{- 2}$ order) balance is given by the following equation:

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \P...
...{\partial \theta^2} = - \mu_0 R_0^4 P' (\Psi_0) - R_0^2 g' (\Psi_0) g (\Psi_0),$ (396)

It is reasonable to assume that $ \Psi_0$ is independent of $ \theta $ since $ \Psi_0$ corresponds to the limit $ a / R \rightarrow 0$. (The limit $ a / R \rightarrow 0$ can have two cases, one is $ r \rightarrow 0$, another is $ R
\rightarrow \infty$. In the former case, $ \Psi $ must be independent of $ \theta $ since $ \Psi $ should be single-valued. The latter case corresponds to a cylinder, for which it is reasonable (really?) to assume that $ \Psi_0$ is independent of $ \theta $.) Then Eq. (396) is written

$\displaystyle \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Psi_0}{\partial r} = - \mu_0 R_0^2 P' (\Psi_0) - g' (\Psi_0) g (\Psi_0) .$ (397)

(My remarks: The leading order equation (397) does not correponds strictly to a cylinder equilibrium because the magnetic field $ \mathbf{B}=
\nabla \Psi_0 \times \nabla \phi + g \nabla \phi$ depends on $ \theta $.) The next order ( $ \varepsilon^{- 1}$ order) equation is

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial
\...
...0) - \mu_0 R_0^4 P''
(\Psi_0) \Psi_1 - R_0^2 [g' (\Psi_0) g (\Psi_0)]' \Psi_1 $

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \P...
... r \cos \theta P' (\Psi_0) + R_0 \frac{\partial \Psi_0}{\partial r} \cos \theta$ (398)

$\displaystyle R_0^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \P...
... r \cos \theta P' (\Psi_0) + R_0 \frac{\partial \Psi_0}{\partial r} \cos \theta$ (399)

It is obvious that the simple poloidal dependence of $ \cos \theta$ will satisfy the above equation. Therefore, we consider $ \Psi _1$ of the form

$\displaystyle \Psi_1 = \Delta (r) \frac{d \Psi_0 (r)}{d r} \cos \theta,$ (400)

where $ \Delta (r)$ is a new function to be determined. Substitute this into the Eq. (), we obtain an equation for $ \Delta (r)$,

$\displaystyle R_0^2 \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d r} \fr...
...\Psi_0 (r)}{d r} = - \mu_0 R_0^2 2 R_0 r P' (\Psi_0) + R_0 \frac{d \Psi_0}{d r}$ (401)

$\displaystyle R_0^2 \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d r} \fr...
...Psi_0) \} \Delta = - \mu_0 R_0^2 2 R_0 r P' (\Psi_0) + R_0 \frac{d \Psi_0}{d r}$ (402)

$\displaystyle R_0^2 \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d r} \fr...
...Psi_0) \} \Delta = - \mu_0 R_0^2 2 R_0 r P' (\Psi_0) + R_0 \frac{d \Psi_0}{d r}$ (403)

$\displaystyle R_0^2 \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d r} \fr...
...Psi_0) \} \Delta = - \mu_0 R_0^2 2 R_0 r P' (\Psi_0) + R_0 \frac{d \Psi_0}{d r}$ (404)

Using the identity

$\displaystyle \frac{d}{d r} \left[ \frac{1}{r} \frac{d}{d r} \left( r \frac{d \...
... r \frac{d^2
\Psi_0}{d r^2} \right) - \frac{1}{r^2} \frac{d \Psi_0 (r)}{d r}, $

equation () is written as

$\displaystyle R_0^2 \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d r} \fr...
...Psi_0) \} \Delta = - \mu_0 R_0^2 2 R_0 r P' (\Psi_0) + R_0 \frac{d \Psi_0}{d r}$ (405)

Using the leading order equation (), we know that the second and fourth term on the l.h.s of the above equation cancel each other, giving

$\displaystyle R_0^2 \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d r} \fr...
...c{d \Delta}{d r} = - \mu_0 R_0^2 2 R_0 r P' (\Psi_0) + R_0 \frac{d \Psi_0}{d r}$ (406)

$\displaystyle \Rightarrow \frac{1}{r} \frac{d}{d r} \left( r \frac{d \Psi_0}{d ...
...\Delta}{d r} = - \mu_0 2 R_0 r P' (\Psi_0) + \frac{1}{R_0} \frac{d \Psi_0}{d r}$ (407)

Using the identity

$\displaystyle \frac{1}{r} \frac{d r}{d \Psi_0} \frac{d}{d r} \left[ r \left( \f...
...} \frac{d \Delta}{d r} \right) + \frac{d^2 \Psi_0}{d r^2} \frac{d \Delta}{d r},$ (408)

equation (407) is written

$\displaystyle \frac{1}{r} \frac{d r}{d \Psi_0} \frac{d}{d r} \left[ r \left( \f...
... r} \right] = - \mu_0 2 R_0 r P' (\Psi_0) + \frac{1}{R_0} \frac{d \Psi_0}{d r},$ (409)

$\displaystyle \Rightarrow \frac{1}{r} \frac{d}{d r} \left[ r \left( \frac{d \Ps...
... 2 R_0 r \frac{d P}{d r} + \frac{1}{R_0} \left( \frac{d \Psi_0}{d r} \right)^2,$ (410)

Using

$\displaystyle B_{\theta 0} = \frac{1}{R_0} \frac{d \Psi_0}{d r}$ (411)

equation (410) is written

$\displaystyle \frac{1}{r} \frac{d}{d r} \left[ r B_{\theta 0}^2 \frac{d \Delta}...
...ght] = - \mu_0 2 \frac{1}{R_0} r \frac{d P}{d r} + \frac{B_{\theta 0}^2}{R_0} .$ (412)

$\displaystyle \Rightarrow \frac{d}{d r} \left[ r B_{\theta 0}^2 \frac{d \Delta}...
...c{r}{R_0} \left( - 2 \mu_0 r \frac{d P (\Psi_0)}{d r} + B_{\theta 0}^2 \right),$ (413)

which agrees with equation (3.6.7) in Wessson's book[12].

yj 2018-03-09