Pressure and toroidal field function profile

The function $ p (\Psi)$ and $ g (\Psi)$ in the GS equation are free functions which must be specified by users before solving the GS equation. Next, we discuss one way to specify the free functions. Following Ref. [9], we take $ P (\Psi)$ and $ g (\Psi)$ to be of the forms

$\displaystyle P (\Psi) = P_0 - (P_0 - P_b) \hat{p} (\overline{\Psi}),$ (441)

$\displaystyle \frac{1}{2} g^2 (\Psi) = \frac{1}{2} g_0^2 (1 - \gamma \hat{g} (\overline{\Psi})),$ (442)

with $ \hat{p}$ and $ \hat{g}$ chosen to be of polynomial form:

$\displaystyle \hat{p} (\overline{\Psi}) = \overline{\Psi}^{\alpha},$ (443)

$\displaystyle \hat{g} (\overline{\Psi}) = \overline{\Psi}^{\beta},$ (444)

where

$\displaystyle \overline{\Psi} \equiv \frac{\Psi - \Psi_a}{\Psi_b - \Psi_a},$ (445)

with $ \Psi_b$ the value of $ \Psi $ on the boundary, $ \Psi_a$ the value of $ \Psi $ on the magnetic axis, $ \alpha $, $ \beta$, $ \gamma$, $ P_0$, $ P_b$, and $ g_0$ are free parameters. Using the profiles of $ P$ and $ g$ given by Eqs. (441) and (442), we obtain

$\displaystyle \frac{d P (\Psi)}{d \Psi} = - \frac{1}{\Delta} (P_0 - P_b) \alpha \overline{\Psi}^{\alpha - 1}$ (446)

where $ \Delta = \Psi_b - \Psi_a$, and

$\displaystyle g \frac{d g}{d \Psi} = - \frac{1}{2} g_0^2 \gamma \frac{1}{\Delta} \beta \overline{\Psi}^{\beta - 1} .$ (447)

Then the term on the r.h.s (nonlinear source term) of the GS equation is written

$\displaystyle - \mu_0 R^2 \frac{d P}{d \Psi} - \frac{d g}{d \Psi} g = \mu_0 R^2...
...+ \frac{1}{2} g_0^2 \gamma \frac{1}{\Delta} \beta \overline{\Psi}^{\beta - 1} .$ (448)

The value of parameters $ P_0$, $ P_b$, and $ g_0$ in Eqs. (441) and (442), and the value of $ \alpha $ and $ \beta$ in Eqs. (443) and (444) can be chosen arbitrarily. The parameter $ \gamma$ is used to set the value of the total toroidal current. The toroidal current density is given by Eq. (62), i.e.,

$\displaystyle J_{\phi} = R \frac{d P}{d \Psi} + \frac{1}{\mu_0} \frac{d g}{d \Psi} \frac{g}{R},$ (449)

which can be integrated over the poloidal cross section within the boundary magnetic surface to give the total toroidal current,
$\displaystyle I_{\phi}$ $\displaystyle =$ $\displaystyle \int J_{\phi} d S$  
  $\displaystyle =$ $\displaystyle \int \left( R \frac{d P}{d \Psi} + \frac{1}{\mu_0} \frac{d g}{d \Psi}
\frac{g}{R} \right) d R d Z$  
  $\displaystyle =$ $\displaystyle \int \left[ R \left( - \frac{1}{\Delta} \right) (P_0 - P_b) \hat{...
...{1}{2} g_0^2 \gamma
\frac{1}{\Delta} \hat{g}' (\overline{\Psi}) \right] d R d Z$ (450)

Using

$\displaystyle d R d Z = \frac{1}{R} \mathcal{J}d \psi d \theta,$ (451)

Eq. (450) is written as

$\displaystyle I_{\phi} = \int \left[ \left( - \frac{1}{\Delta} \right) (P_0 - P...
...\frac{1}{\Delta} \hat{g}' (\overline{\Psi}) \right] \mathcal{J}d \psi d \theta,$ (452)

from which we solve for $ \gamma$, giving

$\displaystyle \gamma = \frac{- \Delta I_{\phi} - (P_0 - P_b) \int [\hat{p}' (\o...
... \frac{1}{R^2} \hat{g}' (\overline{\Psi}) \right] \mathcal{J}d \psi d \theta} .$ (453)

If the total toroidal current $ I_{\phi}$ is given, Eq. (453) can be used to determine the value of $ \gamma$.

yj 2018-03-09