4.7 Laplacian operator in general coordinates (ψ,πœƒ,ΞΆ)

The Laplacian operator is defined by βˆ‡2 β‰‘βˆ‡β‹…βˆ‡. Then βˆ‡2f is written as (f is an arbitrary function)

 2
βˆ‡ f = βˆ‡ β‹…βˆ‡(f                    )
    = βˆ‡ β‹… -βˆ‚fβˆ‡ ψ+  βˆ‚fβˆ‡ πœƒ+ βˆ‚f-βˆ‡ΞΆ  .                  (111)
          βˆ‚ ψ      βˆ‚πœƒ     βˆ‚ΞΆ
To proceed, we can use the divergence formula (110) to express the divergence in the above expression. However, the vector in the above (blue term) is not in the covariant form desired by the divergence formula (110). If we want to directly use the formula (110), we need to transform the vector (blue term in expression (111)) to the covariant form. This process seems to be a little complicated. Therefore, I choose not to use this method. Instead, I try to simplify expression (111) by using basic vector identities:
  2     ( βˆ‚f)         ( βˆ‚f)         (βˆ‚f )
βˆ‡ f = βˆ‡   βˆ‚Οˆ- β‹…βˆ‡ ψ+ βˆ‡   βˆ‚πœƒ- β‹…βˆ‡ πœƒ+ βˆ‡  -βˆ‚ΞΆ  β‹…βˆ‡ΞΆ

      + βˆ‚fβˆ‡2 ψ + βˆ‚fβˆ‡2 πœƒ+ βˆ‚f-βˆ‡2ΞΆ.                          (112)
        βˆ‚Οˆ       βˆ‚πœƒ      βˆ‚ΞΆ
Using the gradient formula, the above expression is further written as
      βˆ‚2f         βˆ‚2f           βˆ‚2f
βˆ‡2f = ---2|βˆ‡ ψ|2 +-----βˆ‡ Οˆβ‹…βˆ‡ πœƒ+ -----βˆ‡ Οˆβ‹…βˆ‡ ΞΆ
      βˆ‚Οˆ         βˆ‚Οˆ βˆ‚πœƒ         βˆ‚Οˆ βˆ‚ΞΆ
      + -βˆ‚2f-βˆ‡πœƒ β‹…βˆ‡ ψ + βˆ‚2f|βˆ‡πœƒ|2 +-βˆ‚2f-βˆ‡πœƒ β‹…βˆ‡ΞΆ
        βˆ‚πœƒβˆ‚Οˆ          βˆ‚πœƒ2       βˆ‚πœƒβˆ‚ΞΆ
        -βˆ‚2f-         -βˆ‚2f--        βˆ‚2f-   2
      + βˆ‚ΞΆβˆ‚Οˆ βˆ‡ΞΆ β‹…βˆ‡Οˆ + βˆ‚ΞΆβˆ‚πœƒβˆ‡ ΞΆ β‹…βˆ‡ πœƒ+ βˆ‚ ΞΆ2|βˆ‡ ΞΆ|
        βˆ‚f       βˆ‚f      βˆ‚f
      + βˆ‚Οˆ-βˆ‡2ψ + βˆ‚πœƒβˆ‡2 πœƒ+ βˆ‚ΞΆ-βˆ‡2ΞΆ,                         (113)
and can be simplified as
       βˆ‚2f         βˆ‚2f            βˆ‚2f
βˆ‡2f =  --2|βˆ‡Οˆ |2 + 2----βˆ‡ Οˆβ‹…βˆ‡ πœƒ+ 2-----βˆ‡ Οˆβ‹…βˆ‡ ΞΆ
       βˆ‚Οˆ2        βˆ‚ Οˆβˆ‚2πœƒ          βˆ‚ Οˆβˆ‚ΞΆ
      + βˆ‚-f|βˆ‡ πœƒ|2 + 2-βˆ‚-f-βˆ‡πœƒ β‹…βˆ‡ΞΆ
        βˆ‚πœƒ2        βˆ‚πœƒβˆ‚ ΞΆ
        βˆ‚2f-   2
      + βˆ‚ΞΆ2|βˆ‡ ΞΆ|
        βˆ‚f  2    βˆ‚f  2   βˆ‚f   2
      + βˆ‚Οˆ-βˆ‡ ψ + βˆ‚πœƒβˆ‡  πœƒ+ -βˆ‚ΞΆβˆ‡ ΞΆ.                          (114)
Assume (ψ,πœƒ,ΞΆ) are field-line following coordinates with βˆ‚rβˆ•βˆ‚πœƒ along the field line direction, then neglect all the parallel derivatives, i.e., derivative over πœƒ, then the above expression is reduced to
βˆ‡2f = βˆ‚2f|βˆ‡ ψ|2 + 2 βˆ‚2f-βˆ‡ ψ β‹…βˆ‡ΞΆ + βˆ‚2f|βˆ‡ΞΆ|2
      βˆ‚Οˆ2         βˆ‚Οˆβˆ‚ΞΆ          βˆ‚ΞΆ2
       βˆ‚f-  2   βˆ‚f- 2
      +βˆ‚ Οˆβˆ‡ ψ + βˆ‚ ΞΆβˆ‡ ΞΆ.                                (115)
This approximation reduces the Laplacian operator from being three-dimensional to being two-dimensional. This approximation is often called the high-n approximation, where n is the toroidal mode number (mode number along ΞΆ direction).