Linearized drift kinetic equation

Next, we derive the linearized version of Eq. (77). The perturbation in electromagnetic field causes perturbation in both distribution function and particle orbits $ \dot{\ensuremath{\boldsymbol{X}}}$, $ \dot{v_{\parallel}}$, and $ \dot{y}$. Thus we write

$\displaystyle f = f_0 + f_1$ (81)

$\displaystyle \dot{\ensuremath{\boldsymbol{X}}} = \dot{\ensuremath{\boldsymbol{X}}}^{(0)} + \dot{\ensuremath{\boldsymbol{X}}}^{(1)},$ (82)

$\displaystyle \dot{v_{\parallel}} = \dot{v_{\parallel}}^{(0)} + \dot{v_{\parallel}}^{(1)},$ (83)

$\displaystyle \dot{y} = \dot{y}^{(0)} + \dot{y}^{(1)} .$ (84)

and substitute this into Eq. (77), we obtain

$\displaystyle \frac{\partial f_0}{\partial t} + \frac{\partial f_1}{\partial t}...
...eft( \dot{y}^{(0)} + \dot{y}^{(1)} \right) \frac{\partial f_1}{\partial y} = 0.$ (85)

The zero order equation is

$\displaystyle \frac{\partial f_0}{\partial t} + \dot{\ensuremath{\boldsymbol{X}...
...0}{\partial v_{\parallel}} + \dot{y}^{(0)} \frac{\partial f_0}{\partial y} = 0.$ (86)

The first order equation is

$\displaystyle \frac{\partial f_1}{\partial t} + \dot{\ensuremath{\boldsymbol{X}...
...\partial v_{\parallel}} + \dot{y}^{(1)} \frac{\partial f_0}{\partial y} \right]$ (87)

Define

$\displaystyle \frac{D}{D t} = \frac{\partial}{\partial t} + \dot{\ensuremath{\b...
...{\partial}{\partial v_{\parallel}} + \dot{y}^{(0)} \frac{\partial}{\partial y},$ (88)

which is the unperturbed orbit propagator, then Eq. (87) is written as

$\displaystyle \frac{D f_1}{D t} = - \left[ \dot{\ensuremath{\boldsymbol{X}}}^{(...
...partial v_{\parallel}} + \dot{y}^{(1)} \frac{\partial f_0}{\partial y} \right],$ (89)

which agrees with Eq. (21) in Porcelli's paper[1].

At this point, I would like to discuss the equilibrium distribution function. We know that functions of constants of the motion are solutions to the kinetic equation. Noting that $ P_{\varphi 0}$, $ \varepsilon_0$, and $ \mu_0$ are constants of the motion in equilibrium field. Then $ f_0 = F
(P_{\varphi 0}, \varepsilon_0, \mu_0)$ is a solution to the kinetic equation Eq. (77). Noting that the right-hand side of Eq. (89) contains partial derivative with respect to variables $ ( \ensuremath{\boldsymbol{X}}, v_{\parallel},
y)$, we would like to transform the partial derivatives with respect to $ ( \ensuremath{\boldsymbol{X}}, v_{\parallel},
y)$ to one with respect to $ (P_{\varphi 0},
\varepsilon_0, \mu_0)$. The right-hand side of Eq. (89) can be written term by term as

$\displaystyle \dot{\ensuremath{\boldsymbol{X}}}^{(1)} \cdot \nabla f_0$ $\displaystyle =$ $\displaystyle \dot{\ensuremath{\boldsymbol{X}}}^{(1)}
\cdot \left( \frac{\parti...
...} \nabla \varepsilon_0 +
\frac{\partial F}{\partial \mu_0} \nabla \mu_0 \right)$  
  $\displaystyle =$ $\displaystyle \dot{\ensuremath{\boldsymbol{X}}}^{(1)} \cdot \left( \frac{\parti...
...a \phi_0 - \frac{\partial F}{\partial \mu_0}
\frac{y}{B^2_0} \nabla B_0 \right)$ (90)


$\displaystyle \dot{v_{\parallel}}^{(1)} \frac{\partial f_0}{\partial v_{\parallel}}$ $\displaystyle =$ $\displaystyle \dot{v_{\parallel}}^{(1)} \left( \frac{\partial F}{\partial P_{\v...
...artial F}{\partial \mu_0} \frac{\partial
\mu_0}{\partial v_{\parallel}} \right)$  
  $\displaystyle =$ $\displaystyle \dot{v_{\parallel}}^{(1)} \left( \frac{\partial F}{\partial
P_{\v...
...\parallel}} +
\frac{\partial F}{\partial \varepsilon_0} m v_{\parallel} \right)$ (91)


$\displaystyle \dot{y}^{(1)} \frac{\partial f_0}{\partial y}$ $\displaystyle =$ $\displaystyle \dot{y}^{(1)} \left(
\frac{\partial F}{\partial P_{\varphi 0}} \f...
...} + \frac{\partial F}{\partial \mu_0}
\frac{\partial \mu_0}{\partial y} \right)$  
  $\displaystyle =$ $\displaystyle \dot{y}^{(1)} \left( \frac{\partial F}{\partial \varepsilon_0} +
\frac{\partial F}{\partial \mu_0} \frac{1}{B_0} \right)$ (92)

Using these results, Eq. (89) is written as

$\displaystyle \frac{D f_1}{D t} = - \left[ \dot{\ensuremath{\boldsymbol{X}}}^{(...
...epsilon_0} + \frac{\partial F}{\partial
\mu_0} \frac{1}{B_0} \right) \right], $

which can be arranged in the form

$\displaystyle \frac{D f_1}{D t} = - \left[ \left( \dot{\ensuremath{\boldsymbol{...
...{X}}}^{(1)} \cdot \nabla B_0 \right) \frac{\partial F}{\partial \mu_0} \right],$ (93)

which agrees with Eq. (22) in Porcelli's paper[1]. Next, we need to express $ \dot{\ensuremath{\boldsymbol{X}}}^{(1)}$, $ \dot{v}_{\parallel}^{(1)}$, and $ \dot{y}^{(1)}$ in terms of the perturbed electromagnetic field. Let us first consider the coefficient befor the $ \partial F / \partial \varepsilon_0$ term in Eq. (93). We note that Eq. (35) takes the following form:

$\displaystyle m v_{\parallel} \dot{v_{\parallel}} + \dot{y} + Z e \dot{\phi} = ...
...rac{y}{B} \frac{\partial B}{\partial t} + Z e \frac{\partial \phi}{\partial t},$ (94)

whose linearized version is (noting that $ \ensuremath{\boldsymbol{A}}^{(0)}$, $ \ensuremath{\boldsymbol{b}}^{(0)}$, and $ B^{(0)}$ is time independent, thus $ \partial
\ensuremath{\boldsymbol{A}}^{(0)} / \partial t$, $ \partial \ensuremath{\boldsymbol{b}}^{(0)} / \partial t$, and $ \partial B^{(0)} / \partial t$ are all zeros)

$\displaystyle m v_{\parallel} \dot{v_{\parallel}}^{(1)} + \dot{y}^{(1)} + Z e \...
...rac{\partial B^{(1)}}{\partial t} + Z e \frac{\partial \phi^{(1)}}{\partial t},$ (95)

where $ \mu_0 = y / B_0$. Using
$\displaystyle \dot{\phi}^{(1)}$ $\displaystyle \equiv$ $\displaystyle \left( \frac{d \phi}{d t} \right)^{(1)}$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial \phi}{\partial t} + \dot{\ensuremath{\boldsymbol{X}}} \cdot
\nabla \phi + 0 + 0 + 0 \right)^{(1)}$  
  $\displaystyle =$ $\displaystyle \frac{\partial \phi^{(1)}}{\partial t} + \dot{\ensuremath{\boldsy...
...la \phi^{(1)} + \dot{\ensuremath{\boldsymbol{X}}}^{(1)} \cdot \nabla \phi^{(0)}$  
  $\displaystyle =$ $\displaystyle \frac{D \phi^{(1)}}{D t} + \dot{\ensuremath{\boldsymbol{X}}}^{(1)} \cdot \nabla
\phi^{(0)}$ (96)

(Note that $ \frac{D}{D t}$ here denotes total time derivative along the unperturbed orbit, instead of the perturbed orbit ) in Eq. (95) gives

$\displaystyle m v_{\parallel} \dot{v_{\parallel}}^{(1)} + \dot{y}^{(1)} + Z e \...
...}}}^{(1)} \cdot \nabla \phi^{(0)} = - L_t^{(1)} - Z e \frac{D \phi^{(1)}}{D t},$ (97)

where, for notation ease, we have defined

$\displaystyle - \mathcal{L}_t^{(1)} = - \left( \frac{Z e}{c} \frac{\partial \en...
...ac{\partial B^{(1)}}{\partial t} + Z e \frac{\partial \phi^{(1)}}{\partial t} .$ (98)

Equation (97) agrees with Eq. (30) in Porcelli's paper[1]. The right-hand side of Eq. (97) provides the desired expression for the coefficent before the $ \partial F / \partial \varepsilon_0$ term of Eq. (93).

The first order equation of Eq. (52) is written as (Noting that we are considering toroidal symmetrical equilibrium, thus terms such as $ \partial
A^{(0)}_R / \partial \varphi$, $ \partial b^{(0)}_R / \partial \varphi$, and $ \partial B^{(0)} / \partial \varphi$ are all zeros.)

$\displaystyle \left( \frac{\partial \mathcal{L}}{\partial \varphi} \right)^{(1)...
...B^{(1)}}{\partial \varphi} - Z e \frac{\partial \phi^{(1)}}{\partial \varphi} .$ (99)

Using this in the Euler equation (43), we obtain

$\displaystyle \left( \dot{P}_{\varphi} \right)^{(1)} = \left( \frac{\partial \mathcal{L}}{\partial \varphi} \right)^{(1)}$ (100)

Note that

$\displaystyle P_{\varphi} = \frac{Z e}{c} A_{\varphi} R + m R v_{\parallel} \frac{B_{\varphi}}{B},$ (101)

then
$\displaystyle \dot{P}_{\varphi}$ $\displaystyle =$ $\displaystyle \frac{\partial P_{\varphi}}{\partial t} +
\dot{\ensuremath{\bolds...
...rphi} + \dot{v}_{\parallel}
\frac{\partial P_{\varphi}}{\partial v_{\parallel}}$  

Using this in Eq. (100), we obtain

$\displaystyle \left( \frac{\partial P_{\varphi}}{\partial t} + \dot{\ensuremath...
...ht)^{(1)} = \left( \frac{\partial \mathcal{L}}{\partial \varphi} \right)^{(1)},$ (102)

which can be further written as

$\displaystyle \dot{\ensuremath{\boldsymbol{X}}}^{(1)} \cdot \nabla P_{\varphi}^...
...rallel}} = \left( \frac{\partial \mathcal{L}}{\partial \varphi} \right)^{(1)} .$ (103)

$\displaystyle \Longrightarrow \dot{\ensuremath{\boldsymbol{X}}}^{(1)} \cdot \na...
... \mathcal{L}}{\partial \varphi} \right)^{(1)} - \frac{D P_{\varphi}^{(1)}}{D t}$ (104)

The right-hand side of Eq. (104) gives desired expression for the coefficient before the term $ \partial F / \partial P_{\varphi 0}$ of Eq. (93). The linearized version of Eq. (32)

$\displaystyle \dot{y} = \mu \left( \frac{\partial B}{\partial t} + \dot{\ensuremath{\boldsymbol{X}}} \cdot \nabla B \right),$ (105)

is written as

$\displaystyle \dot{y}^{(1)} = \mu_0 \left( \frac{\partial B_1}{\partial t} + \d...
... \right) + \mu^{(1)} \dot{\ensuremath{\boldsymbol{X}}}^{(0)} \cdot \nabla B_0 .$ (106)

Noting that $ \mu_0 = y / B_0$, $ \mu^{(1)} = - (y / B_0^2) B_1$, the above equation is written as

$\displaystyle \frac{\dot{y}^{(1)}}{B_0} = \frac{y}{B_0} \left( \frac{\partial B...
...0^2} B_1 \dot{\ensuremath{\boldsymbol{X}}}^{(0)} \cdot \frac{1}{B_0} \nabla B_0$ (107)

$\displaystyle \frac{\dot{y}^{(1)}}{B_0} - y \frac{1}{B_0^2} \dot{\ensuremath{\b...
...\ensuremath{\boldsymbol{X}}}^{(0)} \cdot \frac{1}{B_0^2} \nabla B^{(0)} \right)$ (108)

$\displaystyle \frac{\dot{y}^{(1)}}{B_0} - y \frac{1}{B_0^2} \dot{\ensuremath{\b...
...} \nabla B^{(1)} - B^{(1)} \cdot \frac{1}{B_0^2} \nabla B^{(0)} \right) \right]$ (109)

$\displaystyle \frac{\dot{y}^{(1)}}{B_0} - y \frac{1}{B_0^2} \dot{\ensuremath{\b...
...\ensuremath{\boldsymbol{X}}}^{(0)} \cdot \nabla \frac{B^{(1)}}{B^{(0)}} \right)$ (110)

$\displaystyle \frac{\dot{y}^{(1)}}{B_0} - y \frac{1}{B_0^2} \dot{\ensuremath{\b...
...}^{(1)} \cdot \nabla B_0 = \mu_0 \frac{D}{D t} \left( \frac{B_1}{B_0} \right) .$ (111)

Eq. (111) agrees with Eq. (31) in Porceli's paper. The right-hand side of Eq. (111) provide the desired expression for the coefficient before $ \partial F / \partial \mu_0$ term in Eq. (93). Using Eqs. (97), (104), and (111), Eq. (93) is finally written as

$\displaystyle \frac{D f_1}{D t} = - \left\{ \left[ \left( \frac{\partial \mathc...
...D t} \left( \frac{B_1}{B_0} \right) \frac{\partial F}{\partial \mu_0} \right\},$ (112)

YouJun Hu 2014-05-19