Generalized toroidal angular momentum

Next, we work in cylindrical coordinates $ (R, \varphi, Z)$ and prove that the generalized momentum conjugating to the toroidal angle $ \varphi$ is a constant of motion for axisymmetric electromagnetic field. The generalized momentum conjugating to $ \varphi$ is defined by

$\displaystyle P_{\varphi} = \left( \frac{\partial \mathcal{L}}{\partial \dot{\v...
..., y, \alpha, \dot{R}, \dot{Z}, \dot{v}_{\parallel}, \dot{y}, \dot{\alpha}, t} .$ (36)

Using the Lagrangian given in Eq. (1), Eq. (36) is written as
$\displaystyle P_{\varphi}$ $\displaystyle =$ $\displaystyle \frac{\partial}{\partial \dot{\varphi}} \left[ \left(
\frac{Z e}{...
...uremath{\boldsymbol{b}} \right) \cdot
\dot{\ensuremath{\boldsymbol{X}}} \right]$  
  $\displaystyle =$ $\displaystyle \left( \frac{Z e}{c} \ensuremath{\boldsymbol{A}} + m v_{\parallel...
...\cdot \frac{\partial \dot{\ensuremath{\boldsymbol{X}}}}{\partial \dot{\varphi}}$ (37)

Noting that $ \ensuremath{\boldsymbol{X}} = \ensuremath{\boldsymbol{X}} (R, Z, \varphi)$, we obtain

$\displaystyle \dot{\ensuremath{\boldsymbol{X}}} = \frac{\partial \ensuremath{\b...
... + \frac{\partial \ensuremath{\boldsymbol{X}}}{\partial \varphi} \dot{\varphi},$ (38)

from which we get

$\displaystyle \frac{\partial \dot{\ensuremath{\boldsymbol{X}}}}{\partial \dot{\varphi}} = \frac{\partial \ensuremath{\boldsymbol{X}}}{\partial \varphi} .$ (39)

Further we note that

$\displaystyle \ensuremath{\boldsymbol{X}} (R, Z, \varphi) = R \widehat{\ensurem...
...bol{X}}}{\partial \varphi} = R \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi},$ (40)

where $ \hat{e}_{\varphi}$ is the toroidal unit vector. Thus we obtain that

$\displaystyle \frac{\partial \dot{\ensuremath{\boldsymbol{X}}}}{\partial \dot{\varphi}} = R \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi},$ (41)

Using this, Eq. (37) is written as
$\displaystyle P_{\varphi}$ $\displaystyle =$ $\displaystyle \left( \frac{Z e}{c} \ensuremath{\boldsymbol{A}} + m v_{\parallel...
...\boldsymbol{b}} \right) \cdot R \widehat{\ensuremath{\boldsymbol{e}}}_{\varphi}$  
  $\displaystyle =$ $\displaystyle \frac{Z e}{c} A_{\varphi} R + m v_{\parallel} \frac{R B_{\varphi}}{B}$  

Define $ \psi = A_{\varphi} R$, then the above equation is written as

$\displaystyle P_{\varphi} = \frac{Z e}{c} \psi + m v_{\parallel} \frac{R B_{\varphi}}{B},$ (42)

which agrees with Eq. (17) in Porcelli's paper[1]. Next we calculate the total time derivative of $ P_{\varphi}$, which is given by the Euler-Lagrangian equation corresponding to $ \varphi$,

$\displaystyle \dot{P}_{\varphi} = \frac{\partial \mathcal{L}}{\partial \varphi} .$ (43)

In order to calculate the partial derivative of $ \mathcal{L}$ with respect to $ \varphi$, we write $ \ensuremath{\boldsymbol{X}}$ in terms of the cylindrical coordinate,

$\displaystyle \ensuremath{\boldsymbol{X}} = R \widehat{\ensuremath{\boldsymbol{e}}}_R (\varphi) + Z \widehat{\ensuremath{\boldsymbol{e}}}_Z,$ (44)

the time derivative of which is

$\displaystyle \dot{\ensuremath{\boldsymbol{X}}} = \dot{R} \widehat{\ensuremath{...
...{\boldsymbol{e}}}_{\varphi} + \dot{Z} \widehat{\ensuremath{\boldsymbol{e}}}_Z .$ (45)

(Note that $ \partial \dot{\ensuremath{\boldsymbol{X}}} / \partial \varphi \neq 0$.) Then we have

$\displaystyle \ensuremath{\boldsymbol{A}} \cdot \dot{\ensuremath{\boldsymbol{X}}} = A_R \dot{R} + A_{\varphi} R \dot{\varphi} + A_z \dot{Z},$ (46)

from which we obtain
$\displaystyle \frac{\partial ( \ensuremath{\boldsymbol{A}} \cdot \dot{\ensuremath{\boldsymbol{X}}})}{\partial \varphi}$ $\displaystyle =$ $\displaystyle \frac{\partial A_R}{\partial \varphi} \dot{R} + \frac{\partial
A_...
...artial \varphi} R \dot{\varphi} + \frac{\partial
A_z}{\partial \varphi} \dot{Z}$  
  $\displaystyle =$ $\displaystyle \left( \frac{\partial A_R}{\partial \varphi} \widehat{\ensuremath...
...{\ensuremath{\boldsymbol{e}}}_Z \right) \cdot \dot{\ensuremath{\boldsymbol{X}}}$ (47)

Similarly, we obtain

$\displaystyle \frac{\partial ( \ensuremath{\boldsymbol{b}} \cdot \dot{\ensurema...
...{\ensuremath{\boldsymbol{e}}}_Z \right) \cdot \dot{\ensuremath{\boldsymbol{X}}}$ (48)

Using these, the partial derivative of $ \mathcal{L}$ with respect to $ \varphi$ can be calculated as

$\displaystyle \frac{\partial \mathcal{L}}{\partial \varphi} = \left[ \frac{Z e}...
... \left( \frac{1}{\Omega} \right) - Z e \frac{\partial \phi}{\partial \varphi} .$ (49)

The second last term on the right-hand side of Eq. (49) can be further calculated as
$\displaystyle y \dot{\alpha} \frac{\partial}{\partial \varphi} \left( \frac{1}{\Omega}
\right)$ $\displaystyle =$ $\displaystyle y \dot{\alpha} \left( - \frac{1}{\Omega^2} \right)
\frac{\partial \Omega}{\partial \varphi}$  
  $\displaystyle =$ $\displaystyle y \dot{\alpha} \left( - \frac{1}{B \Omega} \right) \frac{\partial
B}{\partial \varphi} .$ (50)

Using $ y = \mu B$ and $ \dot{\alpha} = \Omega$ in the above equation, we obtain

$\displaystyle y \dot{\alpha} \frac{\partial}{\partial \varphi} \left( \frac{1}{\Omega} \right) = - \mu \frac{\partial B}{\partial \varphi} .$ (51)

Using Eq. (51) in Eq. (49) yields

$\displaystyle \frac{\partial \mathcal{L}}{\partial \varphi} = \left[ \frac{Z e}...
...ac{\partial B}{\partial \varphi} - Z e \frac{\partial \phi}{\partial \varphi} .$ (52)

For toroidal symmetrical equilibrium, the partial derivatives with respect to $ \varphi$ are all zeros. In this case Eq. (52) reduces to $ \partial
\mathcal{L} / \partial \varphi = 0$. Using the Euler-Lagrange equation, we obtain $ \dot{P}_{\varphi} = 0$, i.e., $ P_{\varphi}$ is a constant of the motion in symmetrical field. [Note in passing that Eq. (52) is different from Eq. (32) in Porcelli's paper[1], which is given by

$\displaystyle \frac{\partial \mathcal{L}}{\partial \varphi} = \left[ \frac{Z e}...
...ac{\partial B}{\partial \varphi} - Z e \frac{\partial \phi}{\partial \varphi} .$ (53)

Porcelli's equation is obviously wrong since it can not recover the correct result $ \dot{P}_{\phi} = 0$ for axisymmetrical electromagnetic field.]

YouJun Hu 2014-05-19