Unperturbed orbit integration----not finished------

For the ease of notation, in the following we drop the zero superscript on the unperturbed orbit. And to distinguish instantaneous and the initial value of orbit, we add a prime to $ \ensuremath{\boldsymbol{X}}$ and $ v_{\parallel}$ to denote the instantaneous value. Integrating along the unperturbed orbit, Eq. (122) is written as

$\displaystyle g^{(1)} ( \ensuremath{\boldsymbol{X}}, v_{\parallel}, y) = \int_{- \infty}^0 \mathcal{L}^{(1)} (\tau) d \tau .$ (134)

with the boundary condition

$\displaystyle \ensuremath{\boldsymbol{X}}' (\tau = 0) = \ensuremath{\boldsymbol{X}},$ (135)

$\displaystyle v_{\parallel}' (\tau = 0) = v_{\parallel},$ (136)

and the value of the conserved magnetic moment is determined by $ \mu = y / B (
\ensuremath{\boldsymbol{X}})$. Using the expression of $ \mathcal{L}^{(1)}$ in Eq. (123), Eq. (134) is written as
$\displaystyle g^{(1)}$ $\displaystyle =$ $\displaystyle \int_{- \infty}^0 \left[ \frac{Z e}{c} \ensuremath{\boldsymbol{A}...
...h{\boldsymbol{X}}}' - \mu_0 B_{\parallel}^{(1)} - Z e \phi^{(1)}
\right] d \tau$  
  $\displaystyle =$    

$\displaystyle B^{(1)} (\psi, \theta, \varphi, t) = \hat{B}^{(1)} (\psi, \theta) \exp \left[ - i \left( \omega t + n \varphi \right) \right]$ (137)

$\displaystyle \dot{\psi} = \dot{\ensuremath{\boldsymbol{X}}} \cdot \nabla \psi$ (138)

$\displaystyle \dot{\theta} = \dot{\ensuremath{\boldsymbol{X}}} \cdot \nabla \theta$ (139)

$\displaystyle \dot{\varphi} = \dot{\ensuremath{\boldsymbol{X}}} \cdot \nabla \varphi$ (140)

$\displaystyle \varphi' (t + l t_p) = \varphi' (t) + 2 l \pi$ (141)

YouJun Hu 2014-05-19