A more compact form of the time evolution of $ v_{\parallel}$

The time evolution of $ v_{\parallel}$ is given by Eq. (27), i.e.,

$\displaystyle m v_{\parallel} \dot{v}_{\parallel} = m v_{\parallel}^2 \dot{\ens...
..._{\parallel} Z e \ensuremath{\boldsymbol{b}} \cdot \ensuremath{\boldsymbol{E}},$ (74)

which involves the term $ \dot{\ensuremath{\boldsymbol{X}}} \cdot \ensuremath{\boldsymbol{\kappa}}$. Next we try to simplify this term. Using Eq. (71), the term is written as
$\displaystyle m v_{\parallel}^2 \dot{\ensuremath{\boldsymbol{X}}} \cdot \ensuremath{\boldsymbol{\kappa}}$ $\displaystyle =$ $\displaystyle - \frac{m
v_{\parallel}^2 Z e}{m \Omega B^{\star}} \left( \ensure...
...ldsymbol{B}} \times \mu \nabla B \right) \cdot
\ensuremath{\boldsymbol{\kappa}}$  
  $\displaystyle =$ $\displaystyle \frac{Z e v_{\parallel}^2}{\Omega B^{\star}} \left( \ensuremath{\...
...( \ensuremath{\boldsymbol{b}} \times \nabla \times
\ensuremath{\boldsymbol{b}})$  
  $\displaystyle =$ $\displaystyle \frac{Z e v_{\parallel}^2}{\Omega B^{\star}} \left( B \ensuremath...
...suremath{\boldsymbol{b}} \mu
\nabla B \cdot \ensuremath{\boldsymbol{b}} \right)$  

Using this in Eq. (74) gives

$\displaystyle m v_{\parallel} \dot{v}_{\parallel} = \frac{Z e v_{\parallel}^2}{...
...\parallel} Z e \ensuremath{\boldsymbol{b}} \cdot
\ensuremath{\boldsymbol{E}}, $

which can be arranged as

$\displaystyle m v_{\parallel} \dot{v}_{\parallel} = \left[ \frac{v_{\parallel}^...
...l{b}} +
v_{\parallel} \ensuremath{\boldsymbol{b}} \right] \cdot \mu \nabla B, $

which, after some straightforward algebras, can be arranged into the following forms

$\displaystyle m v_{\parallel} \dot{v}_{\parallel} = \ensuremath{\boldsymbol{v}}...
...l}^{\star} \cdot \left( Z e \ensuremath{\boldsymbol{E}} - \mu \nabla B \right),$ (75)

which agrees with Eq. (15) in Todo's paper[4].

YouJun Hu 2014-05-19