We see that the extension of Fourier series from one-dimension case to two-dimension case is straightforward when expressed in terms of the complex exponential function einπx∕L. However, if we use sin(mπx∕Lx), cos(mπx∕Lx), sin(nπy∕Ly), and cos(nπy∕Ly) as basis functions, the derivation of the two-dimensional Fourier series of G(x,y) is a little complicated (product-to-sum trigonometric identities are involved to simplify the results). Let’s see the derivation. A two-dimensional function G(x,y) can be first expanded as Fourier series about x,
![]() | (127) |
(the zero-frequency component is dropped, will take it back later) and then the two coefficients am(y) and bm(y) can be further expanded as Fourier series about y,
![]() | (128) |
![]() | (129) |
(the zero-frequency component is dropped, will take it back later) Substituting Eq. (128) and (129) into Eq. (127), we obtain
Using the product-to-sum trigonometric identities, equation (130) is written![[ ( ) ( )]
1 ∞∑ ∑∞ (a) m-π nπ- m-π nπ-
G (x,y) = 2 amn cos Lx x + Ly y + cos Lx x− Lyy
m=∞1 n=∞1 [ ( ) ( ) ]
+ 1 ∑ ∑ b(a) sin m-πx + nπy + sin m-πx − nπy
2m=1 n=1 mn Lx Ly Lx Ly
∞∑ ∑∞ [ ( ) ( )]
+ 1 a(mb)n sin m-πx + nπy − sin m-πx − nπ-y
2m=1 n=1 Lx Ly Lx Ly
1 ∞∑ ∑∞ (b) [ (m π nπ ) ( mπ n π )]
+ 2 bmn cos L--x − L-y − cos L--x+ L--y
m=1 n=1 x y x y](fourier_analysis144x.png)
![]() | (132) |
![]() | (133) |
![]() | (134) |
![]() | (135) |
![]() | (136) |
![]() | (137) |
Noting that bm,−n(b) = −bm,n(b), and am,−n(b) = −am,n(b) and sin(0) = 0, then Eq. (131) can be written as
![∑∞ ∑∞ ( )
G (x,y) = 1[a(man)− b(bm)n]cos mπ-x+ nπ-y
m=1n=− ∞ 2 Lx Ly
∑∞ ∑∞ 1 (m π nπ )
+ -[b(man)+ a(bm)n]sin ---x + ---y . (138)
m=1n=− ∞ 2 Lx Ly](fourier_analysis152x.png)
The coefficients can be further written as
![cmn ≡ 1[a(man)− b(bm)n]
2 ∫ ∫ [ ( ) ( ) ( ) ( ) ]
= 1-1-1-- −Ly −LxG (x,y) cos m-πx cos nπ-y − sin mπ-x sin nπy dxdy
2Lx Ly − Ly −Lx Lx Ly Lx Ly
∫ −Ly ∫ −Lx ( )
= 1-1-1-- G (x,y)cos m-πx+ nπy dxdy. (139)
2Lx Ly − Ly −Lx Lx Ly](fourier_analysis153x.png)
![1
smn ≡ -[b(man)+ a(bm)n]
2 ∫ − Ly∫ −Lx [ ( ) ( ) ( ) ( )]
= 1-1-1-- G (x,y) sin mπ-x cos nπ-y + cos m-πx sin nπ-y dxdy
2Lx Ly −Ly −Lx Lx Ly Lx Ly
1 1 1 ∫ − Ly∫ −Lx ( mπ n π )
= 2Lx-Ly- G (x,y)sin Lx-x+ -Lyy dxdy. (140)
−Ly −Lx](fourier_analysis154x.png)
Then comes the drudgery to handle the special cases of m = 0 and/or n = 0. The final results are identical to Eqs. (123)-(126). This kind of derivation is also discussed in my notes on mega code.