3 Equations of motion in cylindrical coordinates

In this section, all quantities are in the normalized form given in Sec. 1.1. For notational simplicity, the over-bars of the notation are omitted. In cylindrical coordinates (R,ϕ,Z), the location vector is written as X = RˆeR(ϕ) + ZˆeZ. Using this, we obtain

dX-  =   dRˆeR + R dˆeR(ϕ)+ dZ-ˆeZ
 dt      dt         dt     dt
     =   dRˆeR + R dϕˆeϕ + dZ-ˆeZ.                      (39)
         dt       dt     dt
Substituting this into Eq. (1) gives
dR       dϕ     dZ      B ⋆      μ              1
dt ˆeR + R dtˆeϕ +-dt ˆeZ = B-⋆v∥ + 2πBB-⋆B × ∇B + BB-⋆E × B,
                        ∥                        ∥
(40)

from which we obtain the following component equations:

     [  ⋆                              ]
dR-=  B--v∥ +---μ---B × ∇B + --1- E× B  ⋅ˆeR
dt    B ⋆∥    2πBB  ⋆∥         BB ⋆∥
(41)

     [                                 ]
dZ-   B-⋆    ---μ---         --1-
dt =  B ⋆v∥ + 2πBB ⋆B × ∇B + BB ⋆E × B  ⋅ˆeZ,
        ∥         ∥             ∥
(42)

dϕ   1 [B ⋆       μ              1       ]
---= -- --⋆v∥ +-----⋆-B ×∇B  + ---⋆E × B  ⋅ˆeϕ,
dt   R  B ∥    2πBB ∥          BB ∥
(43)

In the cylindrical coordinates, the terms B ×∇B, ∇× b, and b ⋅∇× b are written, respectively, as

          ||               ||
          || ˆeR    ˆeϕ   ˆeZ  ||
B × ∇B  = ||BR∂B-- 1Bϕ∂B- B∂ZB- ||,
            ∂R  R ∂ϕ  ∂Z
(44)

          ( 1 ∂bZ   ∂bϕ )     (∂bR   ∂bZ )     ( 1∂(Rbϕ)   1 ∂bR)
∇ ×b   =    R-∂ϕ-− -∂z  ˆeR +  -∂Z-− -∂R-  ˆeϕ +  R---∂R-- − R-∂ϕ-- ˆeZ,  (45)
            ( 1 ∂bZ   ∂bϕ)     (∂bR   ∂bZ )     ( 1∂ (Rb ϕ)  1 ∂bR)
b⋅∇ × b = bR  R-∂ϕ--− ∂z-  + bϕ  -∂Z-− -∂R-  +bZ  R---∂R-- − R-∂-ϕ- .
(46)

Using bR = BR-
 B, bZ = BZ-
B, and bϕ = Bϕ-
B, we obtain

(        ∂BR-  ∂B       (         ∂BZ-  ∂B      (       ∂Bϕ   ∂B
||{  ∂∂bRR-= -∂R-BB−2∂RBR-    ||{   ∂∂bZR-= -∂R-BB−2∂RBZ-   |||{  ∂∂bϕR-= -∂R BB−2∂RBϕ
   ∂bR-= -∂B∂RZ-B− ∂∂BZBR        ∂bZ-= -∂B∂ZZ-B− ∂∂BZBZ      ∂bϕ-= ∂B∂ϕZ B-− ∂∂BZBϕ
||(  ∂Z    ∂BR-BB2− ∂BBR    ||(   ∂Z    ∂BZ-BB2− ∂BBZ   |||  ∂Z   ∂BϕBB2− ∂BB
   ∂∂bRϕ-= -∂ϕ-B2∂ϕ---        ∂∂bZϕ-= -∂ϕ-B2∂ϕ---   (  ∂∂bϕϕ-= -∂ϕ-B2∂ϕ-ϕ
(47)

The equation for v is given by Eq. (11), i.e.,

dv∥= − μB-⋆⋅∇B  + 2π B⋆-⋅E.
dt      B∥⋆         B⋆∥
(48)

The first term on the left-hand-side is written

B-⋆       BR⋆∂B-   B⋆ϕ-1∂B-   B⋆Z-∂B-
B ⋆∥ ⋅∇B = B ⋆∥∂R +  B⋆∥R  ∂ϕ + B∥⋆∂Z ,
(49)

where

          v  ( 1∂b    ∂b )
B⋆R = BR + -∥- ----Z-− --ϕ  ,
          2π  R  ∂ϕ    ∂z
(50)

           v ( 1 ∂(Rb )   1∂b  )
B ⋆Z = BZ + -∥- ------ϕ-− ----R-  ,
           2π  R  ∂R     R  ∂ϕ
(51)

          v ( ∂b    ∂b )
B⋆ϕ = Bϕ + -∥- --R-− --Z- ,
          2π  ∂Z    ∂R
(52)

and B is given by Eq. (13).