$ \nabla \Psi $ component of momentum equation

Next we consider the radial component of the momentum equation. Taking scalar product of the momentum equation with $ \nabla \Psi $, we obtain

$\displaystyle - \omega^2 \rho_0 \xi_{\psi} = - \nabla \Psi \cdot \nabla p_1 + \...
...\Psi \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_0) \times \mathbf{B}_1 .$ (106)

After some algebra (the details are given in Sec. (9.5)), Eq. (106) is written
$\displaystyle - \omega^2 \rho_0 \xi_{\psi}$ $\displaystyle =$ $\displaystyle - \nabla \Psi \cdot \nabla P_1
+{\textmu}_0^{- 1} \vert \nabla \P...
...hbf{B}_0 \cdot \nabla \left(
\frac{Q_{\psi}}{\vert \nabla \Psi \vert^2} \right)$  
    $\displaystyle + ({\textmu}_0^{- 1} \vert \nabla \Psi \vert^2 S -\mathbf{B}_0 \c...
..._s + 2{\textmu}_0^{- 1} \ensuremath{\boldsymbol{\kappa}} \cdot \nabla \Psi
Q_b,$ (107)

where

$\displaystyle P_1 \equiv p_1 + \frac{\mathbf{B}_1 \cdot \mathbf{B}_0}{{\textmu}_0},$ (108)

and $ \ensuremath{\boldsymbol{\kappa}} \equiv \mathbf{b} \cdot \nabla \mathbf{b}$ is the magnetic field curvature with $ \mathbf{b}=\mathbf{B}_0 / B_0$ the unit vector along equilibrium magnetic field. Equation (107) agrees with Eq. (17) in Cheng's paper[3]. In passing, let us examine the physical meaning of $ P_1$ defined by (108). In linear approximation, we have
$\displaystyle B^2$ $\displaystyle =$ $\displaystyle \vert\mathbf{B}_0 +\mathbf{B}_1 \vert^2$  
  $\displaystyle =$ $\displaystyle B_0^2 + B_1^2 + 2\mathbf{B}_0 \cdot \mathbf{B}_1$  
  $\displaystyle \approx$ $\displaystyle B_0^2 + 2\mathbf{B}_0 \cdot \mathbf{B}_1$ (109)

This indicates the perturbation in the square of the magnetic strength is $ 2\mathbf{B}_0 \cdot \mathbf{B}_1$. Therefore, the perturbation in magnetic pressure is written

$\displaystyle \Delta P_{\ensuremath{\operatorname{mag}}} \equiv \frac{\Delta (B...
...thbf{B}_1}{2{\textmu}_0} = \frac{\mathbf{B}_0 \cdot \mathbf{B}_1}{{\textmu}_0},$ (110)

which indicate $ P_1$ defined by Eq. (108) is the total perturbation in the thermal and magnetic pressure.

yj 2015-09-04