$ B_0 \times \nabla \Psi $ component of momentum equation

The $ \mathbf{B}_0 \times
\nabla \Psi$ component of the linearized momentum equation is written

$\displaystyle - \omega^2 \rho_0 \vert \nabla \Psi \vert^2 \xi_s = - (\mathbf{B}...
...Psi) \cdot {\textmu}_0^{- 1} (\nabla \times \mathbf{B}_0) \times \mathbf{B}_1 .$ (111)

The last term of Eq. (111) is written
$\displaystyle (\mathbf{B}_0 \times \nabla \Psi) \cdot {\textmu}_0^{- 1} (\nabla \times
\mathbf{B}_0) \times \mathbf{B}_1$ $\displaystyle =$ $\displaystyle (\mathbf{B}_0 \times \nabla \Psi)
\cdot \mathbf{J}_0 \times \mathbf{B}_1$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot (\mathbf{B}_0 \times \nabla \Psi) \times
\mathbf{B}_1$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot (\mathbf{B}_0 \times \nabla \Psi) \times \lef...
...\vert \nabla \Psi \vert^2} \nabla \Psi + \frac{Q_b}{B^2_0}
\mathbf{B}_0 \right]$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \ver...
... \Psi \vert^2 \mathbf{B}_0) + \frac{Q_b}{B^2_0} (B^2_0 \nabla \Psi - 0)
\right]$  
  $\displaystyle =$ $\displaystyle -\mathbf{J}_0 \cdot [- Q_{\psi} \mathbf{B}_0 + Q_b \nabla \Psi]$  
  $\displaystyle =$ $\displaystyle \mathbf{B}_0 \cdot \mathbf{J}_0 Q_{\psi} .$ (112)

Using Eq. (335), i.e.,

$\displaystyle \nabla \times \mathbf{B}_1 = \nabla \frac{Q_{\psi}}{\vert \nabla ...
...{Q_b}{B^2_0} \times \mathbf{B}_0 + \frac{Q_b}{B^2_0} {\textmu}_0 \mathbf{J}_0 .$ (113)

the second last term on the right-hand side of Eq. (111) is written
$\displaystyle (\mathbf{B}_0 \times \nabla \Psi) \cdot {\textmu}_0^{- 1} (\nabla \times
\mathbf{B}_1) \times \mathbf{B}_0$ $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} (\mathbf{B}_0
\times \nabla \Psi) \cdot \left[ ...
...f{B}_0 + \frac{Q_b}{B^2_0} {\textmu}_0 \mathbf{J}_0 \right] \times
\mathbf{B}_0$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} (\mathbf{B}_0 \times \nabla \Psi) \cdot \left[
...
...B}_0 + \nabla
\frac{Q_b}{B^2_0} \times \mathbf{B}_0 \times \mathbf{B}_0 \right]$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} (\mathbf{B}_0 \times \nabla \Psi) \cdot \left[ ...
...f{B}_0 \cdot \nabla \frac{Q_b}{B^2_0}) - B^2_0 \nabla
\frac{Q_b}{B^2_0} \right]$  
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} (\mathbf{B}_0 \times \nabla \Psi) \cdot \left[ ...
...times \nabla \Psi) \times \mathbf{B}_0 - B^2_0 \nabla
\frac{Q_b}{B^2_0} \right]$ (114)
  $\displaystyle =$ $\displaystyle {\textmu}_0^{- 1} \underbrace{B^2_0 (\mathbf{B}_0 \cdot \nabla Q_...
...times \nabla \Psi) \times \mathbf{B}_0 - B^2_0 \nabla
\frac{Q_b}{B^2_0} \right]$ (115)

The term $ \nabla \times (\mathbf{B}_0 \times \nabla \Psi)$ in the above equation is written as
$\displaystyle \nabla \times (\mathbf{B}_0 \times \nabla \Psi)$ $\displaystyle =$ $\displaystyle - \nabla \times
(\nabla \Psi \times \mathbf{B}_0)$  
  $\displaystyle =$ $\displaystyle - [-\mathbf{B}_0 (\nabla \cdot \nabla \Psi) +\mathbf{B}_0 \cdot
\nabla \nabla \Psi - \nabla \Psi \cdot \nabla \mathbf{B}_0]$  
  $\displaystyle =$ $\displaystyle \mathbf{B}_0 (\nabla^2 \Psi) - (\mathbf{B}_0 \cdot \nabla) \nabla
\Psi + \nabla \Psi \cdot \nabla \mathbf{B}_0$  


$\displaystyle \Rightarrow \frac{Q_s}{\vert \nabla \psi \vert^2} \nabla \times (\mathbf{B}_0 \times
\nabla \Psi) \times \mathbf{B}_0$ $\displaystyle =$ $\displaystyle \frac{Q_s}{\vert \nabla \Psi \vert^2} [-
(\mathbf{B}_0 \cdot \nab...
...times \mathbf{B}_0 + \nabla \Psi
\cdot \nabla \mathbf{B}_0 \times \mathbf{B}_0]$ (116)

Gathering terms involving $ Q_s$, excluding the first term, in expression (115) gives

$\displaystyle (\mathbf{B}_0 \times \nabla \Psi) \cdot \left[ Q_s \left( \mathbf...
...{B}_0 + (\nabla \Psi \cdot \nabla \mathbf{B}_0) \times
\mathbf{B}_0] \right], $

which can be proved to be zero (refer to Sec. 9.6 for the proof). Gathering terms involving $ Q_b$ in expression (115) gives
    $\displaystyle (\mathbf{B}_0 \times \nabla \Psi) \cdot \left[ - B^2_0 \nabla
\frac{Q_b}{B^2_0} \right]$  
    $\displaystyle = (\mathbf{B}_0 \times \nabla \Psi) \cdot \left[ - B^2_0 Q_b \nabla
\frac{1}{B^2_0} - \nabla Q_b \right]$  
    $\displaystyle = \underbrace{- (\mathbf{B}_0 \times \nabla \Psi) \cdot \nabla Q_b} -
B^2_0 Q_b (\mathbf{B}_0 \times \nabla \Psi) \cdot \nabla \frac{1}{B^2_0}$  

It can be proved that the second term of the above expression is equal to $ 2\ensuremath{\boldsymbol{\kappa}} \cdot (\mathbf{B}_0 \times \nabla \Psi) Q_b$ (refer to Sec. 9.9 for details). Thus, from Eq. (114), we obtain

$\displaystyle (\mathbf{B}_0 \times \nabla \Psi) \cdot {\textmu}_0^{- 1} (\nabla...
...1} \ensuremath{\boldsymbol{\kappa}} \cdot (\mathbf{B}_0 \times \nabla \Psi) Q_b$ (117)

Using Eqs. (112) and (117) in Eq. (111) yields

$\displaystyle - \omega^2 \rho_0 \vert \nabla \Psi \vert^2 \xi_s = - (\mathbf{B}...
...mathbf{B}_0 \times \nabla \Psi) Q_b +\mathbf{B}_0 \cdot \mathbf{J}_0 Q_{\psi} .$ (118)

Using $ Q_b =\mathbf{B}_1 \cdot \mathbf{B}_0$, the above equation can be arranged as

$\displaystyle - \omega^2 \rho_0 \vert \nabla \Psi \vert^2 \xi_s = - (\mathbf{B}...
...\mathbf{B}_0 \times \nabla \Psi) Q_b +\mathbf{B}_0 \cdot \mathbf{J}_0 Q_{\psi},$ (119)

which agrees with Eq. (18) in Cheng's paper[3].

yj 2015-09-04