Component of the momentum equation parallel to $ B_0$

The three components of the linearized momentum equation can be obtained by taking scalar product of Eq. (35) with $ \nabla \Psi $, $ \mathbf{B}_0
\times \nabla \psi$, and $ \mathbf{B}_0$, respectively. We first consider the $ \mathbf{B}_0$ component of the momentum equation, which is written as

$\displaystyle - \omega^2 \rho_0 \ensuremath{\boldsymbol{\xi}} \cdot \mathbf{B}_...
...}_0 \cdot [{\textmu}_0^{- 1} (\nabla \times \mathbf{B}_0) \times \mathbf{B}_1],$ (100)

i.e.,

$\displaystyle \omega^2 \rho_0 \xi_b =\mathbf{B}_0 \cdot \nabla p_1 +\mathbf{J}_0 \cdot (\mathbf{B}_0 \times \mathbf{B}_1) .$ (101)

The last term on the right-hand side of Eq. (101) can be written as
$\displaystyle \mathbf{J}_0 \cdot (\mathbf{B}_0 \times \mathbf{B}_1)$ $\displaystyle =$ $\displaystyle \mathbf{J}_0
\cdot \mathbf{B}_0 \times \left[ \frac{Q_{\psi}}{\ve...
...\frac{Q_s}{\vert \nabla \Psi \vert^2} (\mathbf{B}_0 \times \nabla \Psi)
\right]$  
  $\displaystyle =$ $\displaystyle \mathbf{J}_0 \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \vert...
...bla \Psi \vert^2} \mathbf{B}_0
\times (\mathbf{B}_0 \times \nabla \Psi) \right]$  
  $\displaystyle =$ $\displaystyle \mathbf{J}_0 \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \vert...
...s \nabla \Psi - \frac{Q_s}{\vert \nabla \Psi \vert^2} B^2_0 \nabla
\Psi \right]$ (102)
  $\displaystyle =$ $\displaystyle \mathbf{J}_0 \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \vert^2}
\mathbf{B}_0 \times \nabla \Psi \right] - 0$  
  $\displaystyle =$ $\displaystyle \nabla \Psi \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \vert^2}
\mathbf{J}_0 \times \mathbf{B}_0 \right]$  
  $\displaystyle =$ $\displaystyle \nabla \Psi \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \vert^2} \nabla
p_0 \right]$  
  $\displaystyle =$ $\displaystyle \nabla \Psi \cdot \left[ \frac{Q_{\psi}}{\vert \nabla \Psi \vert^2} p'_0
\nabla \Psi \right]$  
  $\displaystyle =$ $\displaystyle Q_{\psi} p'_0 .$  

where $ p_0' \equiv d p_0 / d \Psi$. Using Eq. (82), i.e., $ Q_{\psi}
=\mathbf{B}_0 \cdot \nabla \xi_{\psi}$, the above equation is written as

$\displaystyle \mathbf{J}_0 \cdot \mathbf{B}_0 \times \mathbf{B}_1 = (\mathbf{B}_0 \cdot \nabla \xi_{\psi}) p'_0$ (103)

Substituting Eq. (103) into Eq. (101) gives

$\displaystyle \omega^2 \rho_0 \xi_b =\mathbf{B}_0 \cdot \nabla p_1 + (\mathbf{B}_0 \cdot \nabla \xi_{\psi}) p'_0$ (104)

Using $ \mathbf{B}_0 \cdot \nabla p'_0 = 0$ in the above equation gives

$\displaystyle \omega^2 \rho_0 \xi_b =\mathbf{B}_0 \cdot \nabla (p_1 + p'_0 \xi_{\psi}),$ (105)

which agrees with Eq. (19) in Cheng's paper[3].

yj 2015-09-04