Summary of component equations

For the ease of reference, Eqs. (29), (82), (87), (99), (105), ([*]), and (119) are repeated here:

$\displaystyle p_1 + p_0' \xi_{\psi} = - \gamma p_0 \nabla \cdot \ensuremath{\boldsymbol{\xi}},$ (120)

$\displaystyle Q_{\psi} =\mathbf{B}_0 \cdot \nabla \xi_{\psi},$ (121)

$\displaystyle Q_s = \frac{\vert \nabla \Psi \vert^2}{B^2_0} (\mathbf{B}_0 \cdot \nabla \xi_s - S \xi_{\psi}),$ (122)

$\displaystyle Q_b = \left( - \frac{2 B^2_0}{\vert \nabla \Psi \vert^2} \kappa_{...
..._0^2 \xi_s + B_0^2 \mathbf{B}_0 \cdot \nabla \left( \frac{\xi_b}{B^2_0} \right)$ (123)


$\displaystyle - \omega^2 \rho_0 \xi_{\psi}$ $\displaystyle =$ $\displaystyle - \nabla \Psi \cdot \nabla P_1
+{\textmu}_0^{- 1} \vert \nabla \P...
...hbf{B}_0 \cdot \nabla \left(
\frac{Q_{\psi}}{\vert \nabla \Psi \vert^2} \right)$  
    $\displaystyle + ({\textmu}_0^{- 1} \vert \nabla \Psi \vert^2 S - B_0^2 \sigma) Q_s +
2{\textmu}_0^{- 1} \kappa_{\psi} Q_b .$ (124)

$\displaystyle - \omega^2 \rho_0 \vert \nabla \Psi \vert^2 \xi_s = - (\mathbf{B}...
...1} B^2_0 \mathbf{B}_0 \cdot \nabla Q_s + 2{\textmu}_0^{- 1} \kappa_s B_0^2 Q_b,$ (125)

$\displaystyle \omega^2 \rho_0 \xi_b =\mathbf{B}_0 \cdot \nabla (p_1 + p'_0 \xi_{\psi}),$ (126)

where $ p_0' \equiv d p_0 / d \Psi$, $ \sigma \equiv \mathbf{B}_0 \cdot
\mathbf{J}_0 / B_0^2$, $ \kappa_s \equiv \ensuremath{\boldsymbol{\kappa}} \cdot (\mathbf{B}_0
\times \nabla \Psi) / B_0^2$, which is usually called the geodesic curvature, $ \kappa_{\psi} \equiv \ensuremath{\boldsymbol{\kappa}} \cdot \nabla \Psi$, which is usually called the normal curvature.

yj 2015-09-04