Summary of resistive MHD equations

For the convenience of reference, the MHD equations discussed above are summarized here. The time evolution of the four quantities, namely $ \mathbf{B}$, $ \mathbf{u}$, $ p$, and $ \rho $, are governed respectively by the following four equations:

$\displaystyle \frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}/{\textmu}_0,$ (19)

$\displaystyle \rho \left( \frac{\partial \mathbf{u}}{\partial t} +\mathbf{u} \c...
...ight) = - \nabla p + (\nabla \times \mathbf{B}) /{\textmu}_0 \times \mathbf{B},$ (20)

$\displaystyle \frac{\partial p}{\partial t} = - \gamma p \nabla \cdot \mathbf{u}-\mathbf{u} \cdot \nabla p,$ (21)

$\displaystyle \frac{\partial \rho}{\partial t} = - \rho \nabla \cdot \mathbf{u}-\mathbf{u} \cdot \nabla \rho .$ (22)

Note that only Eq. (19) involves the resistivity $ \eta$. When $ \eta
= 0$, the above system is called ideal MHD equations.



yj 2015-09-04