Flux Surface Functions

Next, examine the meaning of the following volume integral

$\displaystyle D (\psi) \equiv \int_V \mathbf{B} \cdot \nabla \theta d \tau,$ (218)

where the volume $ V = V (\psi)$, which is the volume within the magnetic surface labeled by $ \psi $. Using $ \nabla \cdot
\mathbf{B}= 0$, the quantity $ D$ can be further written as

$\displaystyle D = \int_V \nabla \cdot (\theta \mathbf{B}) d \tau .$ (219)

Note that $ \theta $ is not a single-value function of the spacial points. In order to evaluate the integration in Eq. (219), we need to select one branch of $ \theta $, which can be chosen to be $ 0 \leqslant \theta < 2
\pi$. Note that function $ \theta = \theta (R, Z)$ is not continuous in the vicinity of the contour of $ \theta = 0$. Next, we want to use the Gauss's theorem to convert the above volume integration to surface integration. Noting the discontinuity of the integrand $ \theta \mathbf{B}$ in the vicinity of the contour of $ \theta = 0$, the volume should be cut along the contour, thus, generating two surfaces. Denote these two surfaces by $ S_1$ and $ S_2$, then equation (219) is written as
$\displaystyle D$ $\displaystyle =$ $\displaystyle \int_{S_1} \theta \mathbf{B} \cdot d\mathbf{S}+ \int_{S_2} \theta
\mathbf{B} \cdot d\mathbf{S}+ \int_{S_3} \theta \mathbf{B} \cdot
d\mathbf{S},$  

where the direction of surface $ S_1$ is in the negative direction of $ \theta $, the direction of $ S_2$ is in the positive direction of $ \theta $, and the surface $ S_3$ is the toroidal magnetic surface $ \psi = \psi_0$. The surface integration through $ S_3$ is obviously zero since $ \mathbf {B}$ lies in this surface. Therefore, we have
$\displaystyle D$ $\displaystyle =$ $\displaystyle \int_{S_1} \theta \mathbf{B} \cdot d\mathbf{S}+ \int_{S_2} \theta
\mathbf{B} \cdot d\mathbf{S}+ 0$  
  $\displaystyle =$ $\displaystyle \int_{S_1} 0\mathbf{B} \cdot d\mathbf{S}+ \int_{S_2} 2 \pi \mathbf{B}
\cdot d\mathbf{S}$  
  $\displaystyle =$ $\displaystyle 2 \pi \int_{S_2} \mathbf{B} \cdot d\mathbf{S}.$ (220)

Eq. (220) indicates that $ D$ is $ 2 \pi $ times the magnetic flux through the $ S_2$ surface. Thus, the poloidal flux through $ S_2$ is written as

$\displaystyle \Psi_p = \frac{1}{2 \pi} D = \frac{1}{2 \pi} \int_V \mathbf{B} \cdot \nabla \theta d \tau .$ (221)

Using the expression of the volume element $ d \tau = \vert\mathcal{J}\vert d \theta d
\phi d \psi$, $ \Psi _p$ can be further written in terms of flux surface averaged quantities.
$\displaystyle \Psi_p$ $\displaystyle =$ $\displaystyle \frac{1}{2 \pi} \int_V \mathbf{B} \cdot \nabla \theta
\vert\mathcal{J}\vert d \theta d \phi d \psi$  
  $\displaystyle =$ $\displaystyle \int_0^{\psi} d \psi \int_0^{2 \pi} \mathbf{B} \cdot \nabla \theta
\vert\mathcal{J}\vert d \theta$  
  $\displaystyle =$ $\displaystyle \int_0^{\psi} d \psi \int_0^{2 \pi} \Psi' \nabla \psi \times \nabla
\phi \cdot \nabla \theta \vert\mathcal{J}\vert d \theta$  
  $\displaystyle =$ $\displaystyle - \ensuremath{\operatorname{sign}} (\mathcal{J}) \int_0^{\psi} d \psi \int_0^{2 \pi} \Psi'
(\psi) d \theta$  
  $\displaystyle =$ $\displaystyle - 2 \pi \ensuremath{\operatorname{sign}} (\mathcal{J}) \int_0^{\psi} \Psi' (\psi) d \psi$  
  $\displaystyle =$ $\displaystyle - 2 \pi \ensuremath{\operatorname{sign}} (\mathcal{J}) [\Psi (\psi) - \Psi (0)] .$ (222)

Note that the sign of the Jacobian appears in Eq. (222), which is due to the positive direction of surface $ S_2$ is determined by the positive direction of $ \theta $, which in turn is determined by the sign of the Jacobian (In my code, however, the positive direction of $ \theta $ is chosen by me and the sign of the Jacobian is determined by the positive direction of $ \theta $). We can verify the sign of Eq. (222) is exactly consistent with that in Eq. (19).

Similarly, the toroidal flux within a flux surface is written as

$\displaystyle \Psi_t = \frac{1}{2 \pi} \int_V \mathbf{B} \cdot \nabla \phi d \tau,$ (223)

the poloidal current within a flux surface is written as

$\displaystyle K (\psi) = \frac{1}{2 \pi} \int_V \mathbf{J} \cdot \nabla \theta d \tau,$ (224)

and toroidal current within a flux surface is written as

$\displaystyle I (\psi) = \frac{1}{2 \pi} \int_V \mathbf{J} \cdot \nabla \phi d \tau .$ (225)

(**check**)The toroidal magnetic flux is written as
$\displaystyle \Psi_t$ $\displaystyle =$ $\displaystyle \frac{1}{2 \pi} \int \mathbf{B} \cdot \nabla \phi \vert\mathcal{J}\vert
d \theta d \phi d \psi$  
  $\displaystyle =$ $\displaystyle \int_0^{\psi} d \psi \int_0^{2 \pi} g \frac{1}{R^2} \vert\mathcal{J}\vert d
\theta$  
  $\displaystyle =$ $\displaystyle \int_0^{\psi} \left[ g \frac{V'}{2 \pi} \left\langle \frac{1}{R^2}
\right\rangle \right] d \psi .$ (226)

$\displaystyle \Rightarrow \Psi_t' = g \frac{V'}{2 \pi} \left\langle \frac{1}{R^2}
\right\rangle $

$\displaystyle \Rightarrow \frac{d \Psi_t}{d V} = g \frac{1}{2 \pi} \left\langle
\frac{1}{R^2} \right\rangle $

$\displaystyle \Rightarrow \frac{d \Psi}{d V} = \frac{g}{2 \pi q} \frac{1}{2 \pi} \left\langle \frac{1}{R^2} \right\rangle .$ (227)

Next, calculate the derivative of the toroidal flux with respect to the poloidal flux.
$\displaystyle \frac{d \Psi_t}{d \Psi_p}$ $\displaystyle =$ $\displaystyle \frac{\Psi_t'}{\Psi_p'}$  
  $\displaystyle =$ $\displaystyle - \frac{g V'}{(2 \pi)^2 \Psi'} \left\langle \frac{1}{R^2}
\right\rangle,$ (228)

Comparing this result with Eq. (471) indicates that it is equal to the safety factor, i.e.,

$\displaystyle \frac{d \Psi_t}{d \Psi_p} = q (\psi) .$ (229)

$\displaystyle - \ensuremath{\operatorname{sgn}} (\mathcal{J}) \frac{V'}{(2 \pi)^2} \frac{g}{\Psi'} \langle
R^{- 2} \rangle $

By using the contravariant representation of current density (331), the poloidal current within a magnetic surface is written as
$\displaystyle K (\psi)$ $\displaystyle =$ $\displaystyle \frac{1}{2 \pi} \int \mathbf{J} \cdot \nabla \theta
\mathcal{J}d \theta d \phi d \psi$  
  $\displaystyle =$ $\displaystyle \frac{1}{\mu_0} \int (- g') \nabla \phi \times \nabla \psi \cdot
\nabla \theta \mathcal{J}d \theta d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{1}{\mu_0} \int g' d \theta d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{2 \pi}{\mu_0} \int_0^{\psi} g' d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{2 \pi}{\mu_0} [g (\psi) - g (0)] .$ (230)

Note that the poloidal current is proportional to $ g$, which explains why $ g$ is sometimes called poloidal current function in tokamak literature.

$\displaystyle - \left[ \left( \Psi' \frac{\mathcal{J}}{R^2} \vert \nabla \psi \...
...\right] \nabla \psi \times \nabla \theta -
g' \nabla \phi \times \nabla \psi, $

The toroidal current is written as
$\displaystyle I_{\phi} (\psi)$ $\displaystyle =$ $\displaystyle \frac{1}{2 \pi} \int \mathbf{J} \cdot \nabla \phi
\mathcal{J}d \theta d \phi d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{1}{2 \pi \mu_0} \int \left[ \left( \Psi'
\frac{\mathcal{J...
...a \psi \times \nabla \theta \cdot \nabla \phi \mathcal{J}d
\theta d \phi d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{1}{\mu_0} \int \left[ \left( \Psi' \frac{\mathcal{J}}{R^2...
...}{R^2} \nabla
\psi \cdot \nabla \theta \right)_{\theta} \right] d \theta d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{1}{\mu_0} \int \left[ \left( \Psi' \frac{\mathcal{J}}{R^2} \vert
\nabla \psi \vert^2 \right)_{\psi} \right] d \theta d \psi$  
  $\displaystyle =$ $\displaystyle - \frac{1}{\mu_0} \int_0^{2 \pi} d \theta \int_0^{\psi} d \psi \left(
\Psi' \frac{\mathcal{J}}{R^2} \vert \nabla \psi \vert^2 \right)_{\psi}$  
  $\displaystyle =$ $\displaystyle - \frac{1}{\mu_0} \int_0^{2 \pi} d \theta \left( \Psi'
\frac{\mathcal{J}}{R^2} \vert \nabla \psi \vert^2 - 0 \right) .$ (231)

The last equality is due to $ \nabla \psi = 0$ at $ \psi = 0$. By using the flux surface average operator, Eq. (231) is written

$\displaystyle I_{\phi} (\psi) = - \frac{V' \Psi'}{2 \pi \mu_0} \left\langle \frac{\vert \nabla \psi \vert^2}{R^2} \right\rangle .$ (232)

Next, calculate another useful surface-averaged quantity,

$\displaystyle \frac{\langle \mathbf{J} \cdot \mathbf{B} \rangle}{\langle \mathbf{B} \cdot
\nabla \phi \rangle}$ $\displaystyle =$ $\displaystyle \frac{\left\langle \frac{g^2}{\mathcal{J}} \left[
\left( \frac{1}...
...J}}{R^2} \right)_{\theta} \right] \right\rangle}{\mu_0
\langle g / R^2 \rangle}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{2 \pi}{V'} \int_0^{2 \pi} d \theta g^2 \left[ \left(
...
...ac{\mathcal{J}}{R^2} \right)_{\theta} \right]}{\mu_0 g \langle R^{- 2}
\rangle}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{2 \pi}{V'} g^2 \int_0^{2 \pi} d \theta \left[ \left(
...
...ac{\mathcal{J}}{R^2} \right)_{\theta} \right]}{\mu_0 g \langle R^{- 2}
\rangle}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{2 \pi}{V'} g \int_0^{2 \pi} d \theta \left[ \left(
\f...
...vert \nabla \psi \vert^2 \right)_{\psi}
\right]}{\mu_0 \langle R^{- 2} \rangle}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{2 \pi}{V'} g \int_0^{2 \pi} d \theta \left[ \left(
\f...
...vert \nabla \psi \vert^2 \right)_{\psi}
\right]}{\mu_0 \langle R^{- 2} \rangle}$ (233)

The differential with respect to $ \psi $ and the integration with respect to $ \theta $ can be interchanged, yielding
$\displaystyle \frac{\langle \mathbf{J} \cdot \mathbf{B} \rangle}{\langle \mathbf{B} \cdot
\nabla \phi \rangle}$ $\displaystyle =$ $\displaystyle \frac{\frac{2 \pi}{V'} g \left[ \frac{1}{g} \Psi'
\left( \int_0^{...
...vert \nabla \psi \vert^2
\right) \right]_{\psi}}{\mu_0 \langle R^{- 2} \rangle}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{1}{V'} g \left[ \frac{1}{g} \Psi' V' \left\langle \fr...
...\psi \vert^2}{R^2} \right\rangle \right]_{\psi}}{\mu_0 \langle R^{- 2}
\rangle}$  
  $\displaystyle =$ $\displaystyle \frac{g}{\mu_0 V' \langle R^{- 2} \rangle} \left[ \frac{\Psi' V'}...
...\left\langle \frac{\vert \nabla \psi \vert^2}{R^2} \right\rangle \right]_{\psi}$ (234)

yj 2018-03-09