Finite difference form of toroidal elliptic operator in general coordinate system

The toroidal elliptic operator in Eq. (415) can be written

$\displaystyle \triangle^{\ast} \Psi = \frac{R^2}{\mathcal{J}} [(h^{\psi \psi} \...
...^{\psi \theta} \Psi_{\theta})_{\psi} + (h^{\psi \theta} \Psi_{\psi})_{\theta}],$ (422)

where $ h^{a \beta}$ is defined by Eq. (174), i.e.,

$\displaystyle h^{\alpha \beta} = \frac{\mathcal{J}}{R^2} \nabla \alpha \cdot \nabla \beta .$ (423)

Next, we derive the finite difference form of the toroidal elliptic operator. The finite difference form of the term $ (h^{\psi \psi} \Psi_{\psi})_{\psi}$ is written
$\displaystyle (h^{\psi \psi} \Psi_{\psi})_{\psi} \vert _{i, j}$ $\displaystyle =$ $\displaystyle \frac{1}{\delta
\psi} \left[ h^{\psi \psi}_{i, j + 1 / 2} \left( ...
... \psi} \left(
\frac{\Psi_{i, j} - \Psi_{i, j - 1}}{\delta \psi} \right) \right]$  
  $\displaystyle =$ $\displaystyle H^{\psi \psi}_{i, j + 1 / 2} (\Psi_{i, j + 1} - \Psi_{i, j}) -
H^{\psi \psi}_{i, j - 1 / 2} (\Psi_{i, j} - \Psi_{i, j - 1}),$ (424)

where

$\displaystyle H^{\psi \psi} = \frac{h^{\psi \psi}}{(\delta \psi)^2} .$ (425)

The finite difference form of $ (h^{\theta \theta} \Psi_{\theta})_{\theta}$ is written
$\displaystyle (h^{\theta \theta} \Psi_{\theta})_{\theta} \vert _{i, j}$ $\displaystyle =$ $\displaystyle \frac{1}{\delta \theta} \left[ h^{\theta \theta}_{i + 1 / 2, j} \...
..., j} \left( \frac{\Psi_{i, j} - \Psi_{i - 1, j}}{\delta
\theta} \right) \right]$  
  $\displaystyle =$ $\displaystyle H^{\theta \theta}_{i + 1 / 2, j} (\Psi_{i + 1, j} - \Psi_{i, j}) -
H^{\theta \theta}_{i - 1 / 2, j} (\Psi_{i, j} - \Psi_{i - 1, j}),$ (426)

where

$\displaystyle H^{\theta \theta} = \frac{h^{\theta \theta}}{(\delta \theta)^2} .$ (427)

The finite difference form of $ (h^{\psi \theta} \Psi_{\theta})_{\psi}$ is written as

$\displaystyle \left.(\Psi_{\theta} h^{\psi \theta})_{\psi} \right\vert _{i, j} ...
...i + 1, j - 1 / 2} - \Psi_{i - 1, j - 1 / 2}}{2 \delta \theta} \right) \right] .$ (428)

Approximating the value of $ \Psi $ at the grid centers by the average of the value of $ \Psi $ at the neighbor grid points, Eq. (428) is written as

$\displaystyle (\Psi_{\theta} h^{\psi \theta})_{\psi} \vert _{i, j} = H^{\psi \t...
...Psi_{i + 1, j - 1} + \Psi_{i + 1, j} - \Psi_{i - 1, j - 1} - \Psi_{i - 1, j}) .$ (429)

where

$\displaystyle H^{\psi \theta} = \frac{h^{\psi \theta}}{4 \delta \psi d \theta} .$ (430)

Similarly, the finite difference form of $ (h^{\psi \theta}
\Psi_{\psi})_{\theta}$ is written as
$\displaystyle (\Psi_{\psi} h^{\psi \theta})_{\theta} \vert _{i, j}$ $\displaystyle =$ $\displaystyle \frac{1}{\delta \theta} \left[ h^{\psi \theta}_{i + 1 / 2, j} \le...
...si_{i - 1 / 2, j +
1} - \Psi_{i - 1 / 2, j - 1}}{2 \delta \psi} \right) \right]$  
  $\displaystyle =$ $\displaystyle H^{\psi \theta}_{i + 1 / 2, j} (\Psi_{i + 1, j + 1} + \Psi_{i, j ...
...Psi_{i, j + 1} + \Psi_{i - 1, j + 1} - \Psi_{i, j - 1} - \Psi_{i - 1, j -
1}) .$ (431)

Using the above results, the finite difference form of the operator $ \mathcal{J} \triangle^{\star} \Psi / R^2$ is written as
$\displaystyle \left. \frac{\mathcal{J}}{R^2} \triangle^{\ast} \Psi \right\vert _{i, j}$ $\displaystyle =$ $\displaystyle (h^{\psi \theta} \Psi_{\theta})_{\psi} + (h^{\psi \psi} \Psi_{\ps...
...\theta \theta} \Psi_{\theta})_{\theta} + (h^{\psi \theta}
\Psi_{\psi})_{\theta}$  
  $\displaystyle =$ $\displaystyle H^{\psi \psi}_{i, j + 1 / 2} (\Psi_{i, j + 1} - \Psi_{i, j}) -
H^{\psi \psi}_{i, j - 1 / 2} (\Psi_{i, j} - \Psi_{i, j - 1})$  
  $\displaystyle +$ $\displaystyle H^{\theta \theta}_{i + 1 / 2, j} (\Psi_{i + 1, j} - \Psi_{i, j}) -
H^{\theta \theta}_{i - 1 / 2, j} (\Psi_{i, j} - \Psi_{i - 1, j})$  
  $\displaystyle +$ $\displaystyle H^{\psi \theta}_{i, j + 1 / 2} (\Psi_{i + 1, j} + \Psi_{i + 1, j ...
...(\Psi_{i + 1, j - 1} + \Psi_{i + 1, j} - \Psi_{i - 1, j - 1} - \Psi_{i - 1,
j})$  
  $\displaystyle +$ $\displaystyle H^{\psi \theta}_{i + 1 / 2, j} (\Psi_{i + 1, j + 1} + \Psi_{i, j ...
...(\Psi_{i, j + 1} + \Psi_{i - 1, j + 1} - \Psi_{i - 1, j - 1} - \Psi_{i, j -
1})$  
  $\displaystyle =$ $\displaystyle \Psi_{i, j} (- H^{\psi \psi}_{i, j + 1 / 2} - H^{\psi \psi}_{i, j - 1
/ 2} - H^{\theta \theta}_{i + 1 / 2, j} - H^{\theta \theta}_{i - 1 / 2,
j})$  
  $\displaystyle +$ $\displaystyle \Psi_{i - 1, j - 1} (H^{\psi \theta}_{i, j - 1 / 2} + H^{\psi
\th...
..., j - 1 / 2} -
H^{\psi \theta}_{i + 1 / 2, j} + H^{\psi \theta}_{i - 1 / 2, j})$  
  $\displaystyle +$ $\displaystyle \Psi_{i + 1, j - 1} (- H^{\psi \theta}_{i, j - 1 / 2} - H^{\psi
\...
... - 1 / 2, j}
- H^{\psi \theta}_{i, j + 1 / 2} + H^{\psi \theta}_{i, j - 1 / 2})$  
  $\displaystyle +$ $\displaystyle \Psi_{i + 1, j} (H^{\theta \theta}_{i + 1 / 2, j} + H^{\psi
\thet...
...- 1, j +
1} (- H^{\psi \theta}_{i, j + 1 / 2} - H^{\psi \theta}_{i - 1 / 2, j})$  
  $\displaystyle +$ $\displaystyle \Psi_{i, j + 1} (H^{\psi \psi}_{i, j + 1 / 2} + H^{\psi \theta}_{...
...i + 1, j + 1} (H^{\psi
\theta}_{i, j + 1 / 2} + H^{\psi \theta}_{i + 1 / 2, j})$  

The coefficients are given by

$\displaystyle h^{\psi \psi} = \frac{\mathcal{J}}{R^2} \vert \nabla \psi \vert^2 = \frac{1}{\mathcal{J}} (R_{\theta}^2 + Z_{\theta}^2),$ (432)

$\displaystyle h^{\theta \theta} = \frac{\mathcal{J}}{R^2} \vert \nabla \theta \vert^2 = \frac{1}{\mathcal{J}} (R_{\psi}^2 + Z_{\psi}^2),$ (433)

and

$\displaystyle h^{\psi \theta} = \frac{\mathcal{J}}{R^2} \nabla \psi \cdot \nabla \theta = - \frac{1}{\mathcal{J}} (R_{\theta} R_{\psi} + Z_{\theta} Z_{\psi}),$ (434)

where the Jacobian

$\displaystyle \mathcal{J}= R (R_{\theta} Z_{\psi} - R_{\psi} Z_{\theta}) .$ (435)

The partial derivatives, $ R_{\theta}$, $ R_{\psi}$, $ Z_{\theta}$, and $ Z_{\psi}$, appearing in Eqs. (432)-(435) are calculated by using the central difference scheme. The values of $ h^{\psi \psi}$, $ h^{\theta
\theta}$, $ h^{\psi \theta}$ and $ \mathcal{J}$ at the middle points are approximated by the linear average of their values at the neighbor grid points.

dd

yj 2018-03-09