Metric elements

Let $ \psi = r$ and define $ h^{\psi R} = \nabla \psi \cdot \hat{\mathbf{R}}$, $ h^{\alpha R} = \nabla \alpha \cdot \hat{\mathbf{R}}$, etc. Explicit expressions for these elements can be written as

$\displaystyle h^{\psi R}$ $\displaystyle =$ $\displaystyle \nabla \psi \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle \nabla r \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle - \frac{R}{\mathcal{J}} (Z_{\theta} \hat{\mathbf{R}} - R_{\theta}
\hat{\mathbf{Z}}) \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle - \frac{R}{\mathcal{J}} Z_{\theta}$  
  $\displaystyle =$ $\displaystyle \cos \theta$ (361)


$\displaystyle h^{\psi Z}$ $\displaystyle =$ $\displaystyle \nabla \psi \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle \nabla r \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle - \frac{R}{\mathcal{J}} (Z_{\theta} \hat{\mathbf{R}} - R_{\theta}
\hat{\mathbf{Z}}) \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle \frac{R}{\mathcal{J}} R_{\theta}$  
  $\displaystyle =$ $\displaystyle \sin \theta$  


$\displaystyle h^{\psi \phi}$ $\displaystyle =$ $\displaystyle \nabla \psi \cdot \hat{\ensuremath{\boldsymbol{\phi}}}$  
  $\displaystyle =$ 0  


$\displaystyle h^{\theta R}$ $\displaystyle =$ $\displaystyle \nabla \theta \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle \frac{R}{\mathcal{J}} (Z_{\psi} \hat{\mathbf{R}} - R_{\psi}
\hat{\mathbf{Z}}) \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle \frac{R}{\mathcal{J}} Z_{\psi}$  
  $\displaystyle =$ $\displaystyle - \frac{1}{r} \sin \theta$  


$\displaystyle h^{\theta Z}$ $\displaystyle =$ $\displaystyle \nabla \theta \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle \frac{R}{\mathcal{J}} (Z_{\psi} \hat{\mathbf{R}} - R_{\psi}
\hat{\mathbf{Z}}) \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle - \frac{R}{\mathcal{J}} R_{\psi}$  
  $\displaystyle =$ $\displaystyle \frac{1}{r} \cos \theta$  


$\displaystyle h^{\theta \phi}$ $\displaystyle =$ $\displaystyle \nabla \theta \cdot \hat{\ensuremath{\boldsymbol{\phi}}}$  
  $\displaystyle =$ 0  


$\displaystyle h^{\alpha R}$ $\displaystyle =$ $\displaystyle \nabla \alpha \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle \left[ \frac{\hat{\ensuremath{\boldsymbol{\phi}}}}{R} + \left( \f...
...\mathcal{J}}
R_{\theta} \right) \hat{\mathbf{Z}} \right] \cdot \hat{\mathbf{R}}$  
  $\displaystyle =$ $\displaystyle \frac{\partial \overline{\delta}}{\partial \psi}
\frac{R}{\mathca...
...rac{\partial
\overline{\delta}}{\partial \theta} \frac{R}{\mathcal{J}} Z_{\psi}$  
  $\displaystyle =$ $\displaystyle \frac{\partial \overline{\delta}}{\partial \psi}
\frac{R}{\mathca...
...{\partial
\overline{\delta}}{\partial \theta} \frac{R}{\mathcal{J}} \sin \theta$  
  $\displaystyle =$ $\displaystyle - \frac{\partial \overline{\delta}}{\partial \psi} \cos \theta +
\frac{\partial \overline{\delta}}{\partial \theta} \frac{1}{r} \sin \theta$  
  $\displaystyle =$ $\displaystyle - \frac{\partial \overline{\delta}}{\partial r} \cos \theta + \hat{q}
\frac{1}{r} \sin \theta$  


$\displaystyle h^{\alpha Z}$ $\displaystyle =$ $\displaystyle \nabla \alpha \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle \left[ \frac{\hat{\ensuremath{\boldsymbol{\phi}}}}{R} + \left( \f...
...\mathcal{J}}
R_{\theta} \right) \hat{\mathbf{Z}} \right] \cdot \hat{\mathbf{Z}}$  
  $\displaystyle =$ $\displaystyle \frac{\partial \overline{\delta}}{\partial \theta}
\frac{R}{\math...
...rac{\partial \overline{\delta}}{\partial
\psi} \frac{R}{\mathcal{J}} R_{\theta}$  
  $\displaystyle =$ $\displaystyle - \hat{q} \frac{1}{r} \cos \theta - \frac{\partial
\overline{\delta}}{\partial r} \sin \theta$  

$\displaystyle h^{\alpha \phi} = \frac{1}{R} .$ (362)

Using expression (359), $ d \overline{\delta} / d r$ can be evaluated analytically, yielding
$\displaystyle \frac{d \overline{\delta}}{d r}$ $\displaystyle =$ $\displaystyle 2 \frac{d q}{d r} \arctan \left(
\frac{(R_0 - r)}{\sqrt{R_0^2 - r...
...a}{2}
\right) \frac{d}{d r} \left[ \frac{(R_0 - r)}{\sqrt{R_0^2 - r^2}} \right]$  
  $\displaystyle =$ $\displaystyle 2 \frac{d q}{d r} \arctan \left( \frac{(R_0 - r)}{\sqrt{R_0^2 - r...
...\tan \left( \frac{\theta}{2} \right) \frac{- R_0}{(R_0 + r)
\sqrt{R_0^2 - r^2}}$  

where use has been made of

$\displaystyle \frac{d}{d x} \arctan (x) = \frac{1}{1 + x^2} $

(I did not remeber this formula and I use SymPy to get this.) These expressions are used to benchmark the numerical code that assume general flux surface shapes. The results show that the code gives correct result when concentric circular flux surfaces are used.

yj 2018-03-09