6.5 Gradient and directional derivative in general coordinates (ψ,πœƒ,ΞΆ)

The gradient of a scalar function f(ψ,πœƒ,ΞΆ) is readily calculated from the chain rule,

βˆ‡f =  βˆ‚fβˆ‡ ψ + βˆ‚fβˆ‡ πœƒ+ βˆ‚f-βˆ‡ΞΆ.
      βˆ‚Οˆ      βˆ‚πœƒ     βˆ‚ ΞΆ
(102)

Note that the gradient of a scalar function is in the covariant representation. The inverse form of this expression is obtained by dotting the above equation respectively by the three contravariant basis vectors, yielding

βˆ‚f                     βˆ‚r
βˆ‚Οˆ-= (π’₯ βˆ‡πœƒ Γ—βˆ‡ ΞΆ)β‹…βˆ‡f =  βˆ‚Οˆ-β‹…βˆ‡f
(103)

βˆ‚f                     βˆ‚r
---= (π’₯ βˆ‡ΞΆ Γ—βˆ‡ ψ)β‹…βˆ‡f  = ---β‹…βˆ‡f
βˆ‚πœƒ                     βˆ‚πœƒ
(104)

βˆ‚f                     βˆ‚r
βˆ‚ΞΆ-= (π’₯ βˆ‡Οˆ Γ— βˆ‡πœƒ)β‹…βˆ‡f  = βˆ‚ΞΆ-β‹…βˆ‡f
(105)

Using Eq. (102), the directional derivative in the direction of βˆ‡Οˆ is written as

               βˆ‚f           βˆ‚f            βˆ‚f
βˆ‡ ψ β‹…βˆ‡f = |βˆ‡ ψ|2βˆ‚Οˆ-+ (βˆ‡πœƒ β‹…βˆ‡Οˆ)-βˆ‚πœƒ + (βˆ‡ ΞΆ β‹…βˆ‡ ψ)βˆ‚ΞΆ.
(106)